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An Asymmetric Distance Model for Cross-View
Feature Mapping in Person Reidentification

Ying-Cong Chen, Wei-Shi Zheng, Jian-Huang Lai, and Pong C. Yuen

Abstract— Person reidentification, which matches person
images of the same identity across nonoverlapping camera views,
becomes an important component for cross-camera-view activity
analysis. Most (if not all) person reidentification algorithms are
designed based on appearance features. However, appearance
features are not stable across nonoverlapping camera views
under dramatic lighting change, and those algorithms assume
that two cross-view images of the same person can be well
represented either by exploring robust and invariant features or
by learning matching distance. Such an assumption ignores the
nature that images are captured under different camera views
with different camera characteristics and environments, and
thus, mostly there exists large discrepancy between the extracted
features under different views. To solve this problem, we formu-
late an asymmetric distance model for learning camera-specific
projections to transform the unmatched features of each view into
a common space where discriminative features across view space
are extracted. A cross-view consistency regularization is further
introduced to model the correlation between view-specific feature
transformations of different camera views, which reflects their
nature relations and plays a significant role in avoiding overfit-
ting. A kernel cross-view discriminant component analysis is also
presented. Extensive experiments have been conducted to show
that asymmetric distance modeling is important for person re-
identification, which matches the concerns on cross-disjoint-view
matching, reporting superior performance compared with related
distance learning methods on six publically available data sets.
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I. INTRODUCTION

NOWADAYS, camera network has been widely deployed
in public infrastructure such as airports, railway sta-

tions, and hospitals for surveillance. Due to economic issues,
there are always nonoverlapping fields between camera views.
It then challenges tracking of people and activity prediction
over nonoverlapping camera networks. Hence, it is criti-
cal to reidentify a target person when he/she reappears in
another camera view. Such a problem is called the person
reidentification.

However, appearance of a pedestrian would dramati-
cally change across camera views because the environment
and camera orientations can be totally different. There are
two main feature discrepancy problems: 1) the view-wise
discrepancy and 2) the pedestrian-wise discrepancy. The
view-wise discrepancy is caused by environmental changes
such as illumination and the white balance of camera,
and the pedestrian-wise discrepancy is caused by the
pedestrian himself/herself such as those with backpacks
or unzipped jackets, as well as significant pose changes
[see Fig. 2(a) and (b)].

Alleviating the appearance changes across nonoverlap-
ping camera views includes: 1) seeking discriminative and
robust image descriptor [2]–[4]; 2) learning reliable distance/
subspace models [5]–[9]; and 3) preprocessing model such
as histogram equalization [2], [3] and bright transfer
model [10]–[12]. The first two approaches implicitly assume
that one can select a set of features that do not change dra-
matically. However, appearance could vary dramatically due to
indoor/outdoor lighting and pose variations. As such, images
of the same person from different camera views will look quite
different. Although distance learning methods try to select
features robust to those changes, most of these features are
extracted based on appearance, especially color features [13]
that would be largely affected by illumination or camera
characteristics (e.g., white balance). However, the existing
methods on using distance learning in person reidentification
are all focused on symmetric modeling, i.e., most of them are
based on the following distance form between any two samples
xi and x j :

d(xi , x j ) =
√

(xi − x j )T M(xi − x j )

= ||UT xi − UT x j ||2 (1)
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Fig. 1. Illustration of cross-view feature discrepancy problem and our
method. These images are selected from the SYSU data set [1]. After
feature extraction, we perform principal component analysis for visualization.
It shows that the extracted features are highly divergent so that the distributions
of person images of two views are very distinct and thus, reidentification
is extremely difficult. Our method seeks for good view-specific mappings
that project the original feature to a common space and make reidentification
more reliable. After the feature projection induced by the proposed asym-
metric distance model, the person images of two views are more likely to
match. To model the correlation nature of different projections, a consistency
regularization is imposed to restrict the difference in the projections.

where the positive semidefinite matrix M is factorized into
M = UUT .1 The symmetric modeling intrinsically assumes
that the same feature transformation is applied to all the
camera views, and this ignores feature discrepancy caused
by the different nature of images captured under different
camera views. Since there exists a feature discrepancy problem
across nonoverlapping camera views due to view-wise and
pedestrian-wise discrepancies, the conventional unitary pro-
jection matrix learning in existing distance/subspace learning
methods [5]–[7], [16]–[21] could discard those features with
large discrepancy that may be discriminant during the cross-
view matching. Section III-A will give the details of this
analysis.

In this paper, we propose an asymmetric distance model
for person reidentification, i.e., we generalize the symmet-
ric form in (1) and take the view label into account by
considering the model based on the following asymmetric
form:

d
({

x p
i , p

}
,
{

xq
j , q

}) = ∥∥U pT x p
i − UqT xq

j

∥∥
2 (2)

where p and q are the labels of two different camera views
and always U p �= Uq . Essentially speaking, we form the
asymmetric learning through learning U p and Uq , which we
call the cross-view feature transformation. We hold an assump-
tion that one can seek a latent common space such that the
extracted features across different camera views for the same
person become more similar, meanwhile for different persons,
they become more dissimilar. Based on this assumption,

1Conventionally, some works such as [5] and [14] directly learn M under the
positive semidefinite constraint, and others like [6] and [15] learn U , where
the learned distance is equivalent to the Euclidean distance of the transformed
features. As such, U can be viewed as extracting robust and discriminative
transform from the original input space.

we develop a supervised asymmetric distance learning model.
We also observe that albeit discrepancy exists across dis-
joint camera views, there could exist relation between the
contents captured by any two camera views, because of the
existence of the same person to match and probably similar
indoor/outdoor environments. Hence, the discrepancy between
feature transformations U p and Uq should be controlled.
To this end, we introduce a cross-view consistency regular-
ization into the cross-view model in order to constrain the
difference in view-specific projections, so as to implicitly
embed the relation between cross-view images into the dis-
tance learning model. Based on the above ideas, we develop a
new cross-view matching algorithm for person reidentification,
called the cross-view discriminant component analysis, which
is illustrated in Fig. 1.

In summary, this paper makes the following contributions.
1) We propose and develop a new asymmetric distance

learning model, called the CVDCA algorithm, to trans-
form the features under different views to a com-
mon space for person reidentification. The proposed
method addresses the feature discrepancy problem by
view-specific mappings and models the correlation
of different views by a consistency regularization.
We also experimentally show that this asymmetric dis-
tance model performs much better than the symmetric
ones.

2) The linear CVDCA is further extended to kernel version
and kernelized CVDCA is then proposed.

Extensive experiments have been conducted to demonstrate
that the proposed CVDCA and Kernel Cross-View Discrimi-
nant Component Analysis (KCVDCA) can address the feature
discrepancy problem in person reidentification much better.

II. RELATED WORK

In order to obtain robust and discriminative representa-
tion of pedestrians across different camera views, various
methods were proposed to extract color or texture features.
Zhao et al. [3], [22] proposed salience-based approaches for
person reidentification in which patch matching is employed
with adjacency constraint to handle the pose misalignment
problem. Later, Zhao et al. [2] proposed a midlevel filter
that automatically discovers patch clusters. However, since
color features are used in patch matching, this process-
ing may not be optimal when illumination of different
views varies dramatically. Yang et al. [4] proposed a novel
salient color-name-based color descriptor (SCNCD) for person
reidentification. However, such a descriptor may be divergent
of each view if the lighting of different camera views differs
to an extent. Kviatkovsky et al. [23] proposed an illumination-
invariant color feature based on log-chromaticity color space
and shape context. However, this method highly depends on
high-quality mask, which is usually unavailable in real-world
applications. There exist color calibration methods [10]–[12]
that aim at learning bright transfer functions to establish
a mapping of brightness value between two camera views,
and thus the gap between them is reduced. However, the
cross-camera-view discrepancy is not only caused by lighting.
In addition, because of incomplete ranges of color value
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Fig. 2. Typical examples of the data sets and sample pairs with view-wise discrepancy or pedestrian-wise discrepancy. Images of the first row were captured
by camera a and while images of the second row were captured by camera b. (a) Image pairs whose disagreement is more caused by the environmental
changes. (b) Images whose disagreement is caused mainly by the pedestrian himself/herself. (c)–(h) Images whose disagreement is caused by both pedestrian
himself and environmental changes.

found in the training data, the mapping function may con-
tain many-to-one color correspondence [11], which would
cause the loss of useful information. Another approach to
deal with the histogram feature mismatch problem is feature
warps (FWs) [24]. warp functions are solved by aligning
the feature histograms between the two camera views, and
then they are used as image pair descriptors. Note that this
method uses the principles of dynamic time warping to align
histograms of each image pair, which implicitly assumes that
the divergence of histograms results from histogram shifting.

Due to the difficulty of designing reliable image descriptors
across different camera views, some distance/subspace learn-
ing methods have been proposed to reduce the variation across
views. Zheng et al. [8] formulated person reidentification as a
relative distance comparison learning problem by maximizing
the probability that relevant samples have smaller distance
than the irrelevant ones. Liao and Li [25] proposed a logistic
metric learning approach with Positive Semidefinite constraint
and an asymmetric sample weighting strategy. Li et al. [18]
proposed a locally adaptive decision function (LADF) to
jointly learn the distance matrix and the locally adaptive
threshold. Kostinger et al. [17] proposed a simple and effective
distance learning called KISS (keep it simple and straightfor-
ward) Metric Learning (KISSME) to conduct hypothesis test
on similar/dissimilar pairs. Later, Tao et al. [26] improved
KISSME by introducing a minimum classification criterion
and a smoothing technique in order to better estimate the small
eigenvalue of the covariance matrix. Liao et al. [27] proposed
the cross-view quadratic discriminant analysis that has the sim-
ilar idea of KISSME but can jointly learn a low-dimensional
subspace and a metric. Mignon and Jurie [6] proposed Pairwise
Constrained Component Analysis (PCCA) to learn a projection
with sparse pair-wise similarity/dissimilarity constraints. Later,
Xiong et al. [28] proposed the regularized PCCA to maximize
the inter-class margin and avoid overfitting. Pedagadi et al. [9]
applied local Fisher discriminant analysis (LFDA) to project

the raw features to a discriminative subspace so that the
between-class separability is maximized while the multi-
modality structure is preserved and a nonlinear extension
using the kernel trick of this work was reported in [28].
Paisitkriangkrai et al. [29] proposed a structural learning
framework to combine multiple prelearned distances, which
leads to better performance than using a unitary distance
measure. All these methods are symmetric based, and the
underlying assumption of the above methods is that features
of all camera views have the same properties, while for person
reidentification images captured from different camera views
could differ notably. Therefore, the unitary projection matrix
shared by all views learned by these methods would prob-
ably discard the use of divergent features. Recently, sparse-
reconstruction-based classification of face has been extended
to person reidentification [30], [31]. However, the reconstruc-
tion has an underlying assumption that images of the same
person should distribute similarly at different camera views,
which is not the fact as shown in this work.

Domain adaptation [32]–[34], which can reduce the gap
between different distributions, seems an alternative solution
to cross-view matching. However, those methods cannot be an
optimal way to diminish the gap between the two camera views
in person reidentification, since they assume the existence
of overlapping between training and gallery/testing classes,
so that the classifier/metric learned from the training set
can be adapted to the gallery/testing one, while for person
reidentification, there is no overlapping between the training
and gallery/testing classes. Note that our work is also different
from cross-data set transfer [35]–[37] since we do not incor-
porate any source data set.

There are related works [39]–[44] in person reidentification
that can also learn view-specific mappings. An et al. [39], [40]
generated a new representation by projecting all samples to
the regularized canonical correlation analysis (rCCA) sub-
space and constructing the reference descriptors with the
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reference set. An et al. also proposed robust canonical cor-
relation analysis (ROCCA) [41] to better estimate the data
covariance matrices. rCCA and ROCCA are multimodal learn-
ing methods that project heterogeneous features to a common
space and thus they are related to our model. However, the
person reidentification we discuss in this paper is not a mul-
timodal learning problem and there are important differences
between our method and rCCA or ROCCA. First, rCCA and
ROCCA do not control the discrepancy between view-specific
feature transformations. Although the feature transformation is
specific to each camera view, there should be relation between
them, because samples captured from different views are not
heterogeneous but related either from the same identity or
from people with a similar appearance. As shown in our
experiment, this is one of the key factors that makes our model
work much better than rCCA. Second, rCCA and ROCCA
do not consider intra-view modeling, which is also useful in
our problem. In comparison, our method includes cross-view
consistency regularization and intra-view modeling. Besides,
we introduce local weighting to the feature transformation
processing so as to reduce the impact of extremely different
positive sample pairs. Hence, our model is more suitable for
person reidentification. Liu et al. [42] proposed to learn indi-
vidual local feature projection for each image sample, which
intends to alleviate the influence of configuration variations.
In addition, Li and Wang [43] proposed to use a gating
network to partition the image space of the two camera views
into subregions, and some local experts are trained to align
the features in the subregions. Some other multimodality
methods like cross-modal metric learning (CMML) [45] are
related to our approach since they also learn view-specific
mappings. However, like rCCA and ROCCA, these methods
discussed above do not control the discrepancy of inter-
view projections or do not incorporate intra-view model-
ing, which may not be optimal when applying to person
reidentification.

III. APPROACH

A. Feature Discrepancy of Different Camera Views

Let us consider a general case that there are N (N ≥ 2)
cameras with significant feature discrepancy. Let Xk =
[xk

1, xk
2 , . . . , xk

nk ] ∈ R
d×nk

denote the feature matrices
extracted from the pedestrian images captured by the kth view,
where d is the feature dimension and nk is the number of
samples of the kth view. The average intra-class variation δ
and its lower bound δ′ of two specific views (views a and b)
are given by

δ = 1

na,b
p

∑

i, j∈Ça,b

∣∣xa
i − xb

j

∣∣

≥ 1

na,b
p

∑

i, j∈Ça,b

(
xa

i − xb
j

) = δ′ (3)

where Ça,b is the set of all positive pairs in views a and b

and na,b
p is the cardinality of Ça,b.

Let us consider a single-shot situation, i.e., each pedestrian
has only one image for each view with na = nb. Then δ′ can

be rewritten as

δ′ = 1

na,b
p

na∑

i=1

xa
i − 1

na,b
p

nb∑

j=1

xb
j . (4)

Assume that Xa and Xb are histogram features. We draw
(1/na,b

p )
∑

i xa
i , (1/na,b

p )
∑

j xb
j and δ′ in the first and

second rows of Fig. 3. We observe that (1/na,b
p )

∑
i xa

i and
(1/na,b

p )
∑

j xb
j are not identical, i.e., some features are highly

divergent. Those highly different features (the red bars) will
generate a high δ′. Note that if Xa and Xb are drawn from
identical distribution, (1/na,b

p )
∑

i xa
i and (1/na,b

p )
∑

j xb
j shall

be similar. Therefore, we believe that such highly different
features between the two views are caused by the unmatched
distributions, which will lead to the feature discrepancy
problem.

Most supervised subspace/metric learning methods try to
reduce the intra-class variation and the lower bound δ′ will
also be reduced. If a method learns an identical projection
or distance matrix for all views, the weights of the divergent
features tend to be reduced since those features will cause
high intra-class variation. As shown in row 6 of Fig. 3,
taking LFDA [9], for example, it learns unitary projection
for both views, and thus the weights for highly divergent
features are relatively small. However, those features could
contain some discriminative information, and deemphasizing
them may result in a performance drop. Since using a unitary
mapping for all views is not optimal to extract discriminative
features, we propose to learn camera-view specific mappings.
The camera-view specific mappings are learned so as to
transform those features into a common space. As shown in the
third and fourth rows of Fig. 3, using view-specific mappings,
the weights on highly divergent features do not have to be
suppressed and more features can be used. By learning view
specific transforms, we ultimately formulate an asymmetric
distance model called CVDCA for matching person images
across disjoint camera views.

To provide a further analysis of the discrimination power of
symmetric and asymmetric distances, we quantify the power
by computing the quotient between the average inter-class
distance and the average intra-class distance based on the
features generated by CVDCA and LFDA. The quotient is
defined as follows:

Q =
∑

i, j∈Ç̄a,b

∥∥ ya
i − yb

j

∥∥2

∑
i, j∈Ça,b

∥∥ ya
i − yb

j

∥∥2 (5)

where ya
i and yb

j are projected features, Ç̄a,b is the set of
all negative pairs in views a and b, and Ça,b is the set of
all positive pairs. Here Q represents the quotient. A larger Q
indicates that the features can be separated better and thus
they are more discriminative. Note that the values of Q of
the features extracted by CVDCA are 1.47, 2.27, and 1.37
for RGB, HSV, YCbCr, respectively, while those extracted by
LFDA are 1.10, 1.07, and 1.15, respectively. Therefore, we
claim that using view-specific mappings, more discriminative
features are retained. In addition, as shown in our experiments,
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Fig. 3. Example of feature discrepancy of RGB, HSV, and YCbCr features. The first and the second rows show the distributions of (1/na,b
p )

∑
i xa

i
and (1/na,b

p )
∑

j xb
j , respectively. The x-axis is the index of bucket and the y-axis is the probability. The third row shows the distribution of δ′. The

fourth and fifth rows show view-specific mappings of views a and b trained by our method (will be presented in Section III-B). The sixth row shows the
unitary mapping trained by LFDA [9]. The x-axis corresponds to the buckets in the histogram and the y-axis is the weight of each bucket. The yellow bars
indicate those features with large δ′. As shown, the unitary mapping learned by LFDA tends to suppress the weight of the highly divergent features, while
our method can utilize those features. This experiment was conducted on PRID450S [38]. Best viewed in color. (a) RGB. (b) HSV. (c) YCbCr.

the proposed method does not dismiss the use of these features
and achieves a much better performance than LFDA.

B. Discrepancy Reduction by View-Specific Transformations
The asymmetric distance model based person reidentifica-

tion is formulated by learning feature transformations for each
camera view. Let U p = [up

1 , up
2 , . . . , up

C ] denote the projec-
tion matrices for view p, where p = 1, 2, . . . , N and C is
the dimension of the projected space. We aim at learning U p

that embeds the features X p into a discriminative common
Euclidean space, where the relevant pairs are expected to be
with small Euclidean distances and the irrelevant pairs are with
large ones.

It is expected that the learned latent common space could
model the relations of both cross-view sample pairs and
intra-view sample pairs. Hence, our model consists of both
cross-view modeling and intra-view modeling

f = fcross + η fintra (6)

where the cross-view modeling fcross and the intra-view mod-
eling fintra can be formulated as the following and η is a
positive value that controls the weight of intra-view modeling:

fcross =
N−1∑

p=1

N∑

q=p+1

n p∑

i=1

nq∑

j=1

W p,q
i j

∥∥U pT x p
i − UqT xq

j

∥∥2
2 (7)

fintra =
N∑

p=1

n p∑

i=1

n p∑

j=1

W p,p
i, j

∥∥U pT x p
i − U pT x p

j

∥∥2
2. (8)

In the above modeling, W p,q
i j is the weight on each pair of

samples between views p and q and U p is a projection of

view p. We define W p,q
i j as

W p,q
i j =

⎧
⎪⎪⎨
⎪⎪⎩

1

n p,q
pos

Ap,q
i j if

(
x p

i , xq
j

) ∈ Çp,q

−γ
1

n p,q
neg

otherwise
(9)

where Ap,q
i j could set as a local weighting term like LFDA [9]

or simply set as 1, n p,q
pos and n p,q

neg are the numbers of positive
and negative pairs between view p and q , respectively, and
γ is a scalar. Since the number of positive pairs is much
smaller than the number of negative pairs, we use (1/n p,q

pos )
and (1/n p,q

neg ) to normalize them, and thus the weight of intra-
class modeling and inter-class modeling can be easily modeled
by γ. In this way, minimizing the objective function f will
reduce the intra-class difference, meanwhile it will enlarge
the inter-class difference. When p �= q , W p,q characterizes
the cross-view relationship; when p = q , it characterizes the
intra-view relationship.

In order to avoid trivial solution, namely, Uk = 0 for
k = 1, 2, . . . , N , we additionally incorporate some constraints
and formulate an optimization problem as

min
U1,U2,...,U N

N−1∑

p=1

N∑

q=p+1

n p∑

i=1

nq∑

j=1

W p,q
i j

∥∥U pT x p
i − UqT xq

j

∥∥2
2

+
N∑

p=1

n p∑

i=1

n p∑

j=1

W p,p
i, j

∥∥U pT x p
i − U pT x p

j

∥∥2
2

s.t. UkT MkUk = I, k = 1, 2, . . . , N (10)
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where Mk = Xk XkT + μI and I denotes the iden-
tity matrix that avoids singularity of the covariance matrix.
These constraints ensure that the projected features of each
view have unit amplitude and thus they are not shrunken
to zero.

C. Transformations Constrained by Cross-View
Consistency Regularization

Intuitively, if the feature distributions of two views are
similar, the learned feature transformations U p and Uq are
also similar; otherwise, the learned U p and Uq will be
different. Since the features of corrupted positive pairs are
arbitrarily different, e.g., frontal view and dorsal view of
a pedestrian wearing a white t-shirt and a black backpack
(see Fig. 2), it could make the learned U p and Uq quite
different. These largely different projection basis pairs do
not capture the natural property that images from different
camera pairs are correlated to an extent, and the perfor-
mance would drop dramatically when using these projection
pairs.

To embed this correlation nature to our model, we propose
to penalize those largely different feature transformations.
Specifically, the difference in each projection basis pair can
be measured by the Bregman discrepancy [46], [47]. Given
a strictly convex function F : R

d×C → R, the Bregman
discrepancy of a projection pair is given by

dF (U p, Uq ) = F(U p) − F(Uq ) − ∇F(Uq)T (U p − Uq )

(11)

where ∇F is the derivative of F . For any strictly convex F ,
dF (U p, Uq ) ≥ 0.

The choice of F is nontrivial to the performance and
the computational complexity. If we set F(x) = xT x, the
Bregman discrepancy can be simplified to an Euclidean dis-
tance ||U p −Uq ||2F . As will be shown later, such a regulariza-
tion term results in an elegant solution and it works empirically
well. For all camera pairs,

∑N−1
p=1

∑N
q=p+1 ||U p − Uq ||2F is

added to the objective function (6). We call this regularization
the cross-view consistency regularization. In the Appendix, we
will explain how this regularization term is related to the prior
knowledge of the projection matrices.

Since
∑N−1

p=1
∑N

q=p+1 ||U p − Uq ||2F = (N − 1)tr(
∑N

k=1

UkT Uk − 2
∑N−1

p=1
∑N

q=p+1 U pT Uq), where tr(·) denotes
the trace operation, we formulate a regularized version
of (10) as

min
U1,U2,...,U N

N−1∑

p=1

N∑

q=p+1

n p∑

i=1

nq∑

j=1

W p,q
i j

∥∥U pT x p
i − UqT xq

j

∥∥2
2

+
N∑

p=1

n p∑

i=1

n p∑

j=1

W p,p
i, j

∥∥U p x pT
i − U p x pT

j

∥∥2
2

+ tr

(
λ

N∑

k=1

UkT Uk − 2λ′
N−1∑

p=1

N∑

q=p+1

U pT Uq
)

s.t. UkT MkUk = I; k = 1, 2, . . . , N (12)

where

λ = (N − 1)λ′. (13)

This cross-view consistency regularization is important to
exploit the intrinsic nature relations between view-specific
feature transformations and help alleviate overfitting signifi-
cantly, as evaluated in Section IV-D1. We call the above model
as CVDCA.

D. Kernel Extension

The above method learns linear projection matrices for
feature transformation and may suffer from the nonlinearity of
given data. We further propose the kernel extension to alleviate
this problem.

The implicit high-dimensional subspace bases of the kth
view could be represented as X̃αk , where X̃ is the high-
dimensional column-wise feature matrix of all training data.
Therefore, the projected data could be represented as

hk(x̃k) = αkT X̃T x̃k = αkT k(X, xk) (14)

where k(X, x) = [k(X1, x), . . . , k(Xn, x)]T . k(·, ·) is the
kernel function and hk(·) is the projection function of the
kth view and n is the number of training samples.

By substituting (14) into (6), we find that the loss function
of KCVDCA is similar to the one of CVDCA by replacing
U p , Uq , x p

i and xq
j with α p , αq , k(X, x p

i ), and k(X, xq
j ),

respectively.
Using the reproducing property of the reproduced kernel

Hilbert space, 〈k(·, x), k(·, y)〉 = k(x, y), the regularization
terms in the implicit high dimension space can be rep-

resented as
∑N

k=1 αkT Kαk and − ∑N−1
p=1

∑N
q=p+1 α pT Kαq ,

where K is the gram matrices defined as K = [k(X, X1),
k(X, X2), . . . , k(X, Xn )].

In summary, the optimization problem of KCVDCA is
described as follows:

min
α1,α2,...,αN

×
N−1∑

p=1

N∑

q=p+1

n p∑

i=1

nq∑

j=1

W p,q
i j

∥∥α pT k
(
X, x p

i

) − αqT k
(
X, xq

j

)∥∥2
2

+
N∑

p=1

n p∑

i=1

n p∑

j=1

W p,p
i, j

∥∥α pT k
(
X, x p

i

) − α pT k
(
X, x p

j

)∥∥2
2

+ tr

⎛
⎝λ

N∑

k=1

αkT Kαk − 2λ′
N−1∑

p=1

N∑

q=p+1

α pT Kαq

⎞
⎠

s.t. αkT M ′kαk = 1; k = 1, 2, . . . , N (15)

where M ′k = K k K kT + λK and K k = [k(X, xk
1),

k(X, xk
2 ), . . . , k(X, xk

nk
)].

E. Closed-Form Solution

To show the solution of the objective function, we take
the linear case as an example and the kernel case is
similar.
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The objective function of the optimization problem (12) can
be rewritten as

f = tr

⎛
⎝

N−1∑

p=1

N∑

q=p+1

U pT H p,q U p + UqT Hq,pUq

− 2U pT R p,q Uq + λ

N∑

k=1

UkT Uk

⎞
⎠ (16)

where H p,q = X p(D p,q +ηD p,p −ηW p,p)X pT , where D p,q

is a diagonal matrix whose diagonal entries are defined as
D p,q

ii = ∑n
j=1 W p,q

i j and R p,q = X p W p,q XqT + λ′ I .

The objective function can be further simplified as

f = tr(UT RU) (17)

where U is a row-wise concatenated matrix that consists of
projection bases of all N views and is defined as

U = [U1; U2; . . . ; U N ] ∈ R
Nd×C (18)

and R is defined as

R =

⎛
⎜⎜⎜⎜⎜⎝

G1 −R1,2 · · · −R1,N

−R2,1 G2 · · · −R2,N

...
...

...
...

−RN,1 −RN,2 · · · GN

⎞
⎟⎟⎟⎟⎟⎠

(19)

where Gk = ∑
q �=k Hk,q + λI .

Note that it is reasonable to relax the constraints
UkT MkUk = I, k = 1, 2, . . . , N , to

∑N
k=1 UkT MkUk = N I ,

since the relaxed version is sufficient to avoid trivial solution.
Therefore, the optimization problem can be modified as

min
U

tr(UT RU)

s.t. UT MU = N I (20)

where M is a block diagonal matrix defined as
M = diag(M1, M2, . . . , M N ).

The optimization problem (20) can be solved by com-
puting c eigenvectors corresponding to the smallest eigen-
values of the following generalized eigendecomposition
problem:

Ru = νMu (21)

where ν is the Lagrange multiplier. After getting C eigenvec-
tors u1, u2, . . . , uC , the cth transformation basis for the pth
view is up

c = (δp(uc)/||δp(uc)||M), where δp(·) means getting
the pth subvector and ||v||M = (vT Mv)1/2.

Since the solution of kernel extension (15) is quite similar
to the linear case (12), we do not present its solution in
detail. By replacing α with U , Mk with M ′k [see (15)],
R p,q with K p D p,q K qT + λ′ K , and H p,q with K p(D p,q +
ηD p,p −ηW p,p)K pT , the solution of the kernel extension can
be obtained by solving (21).

F. Properties of the Distance

In this section, we discuss the properties of the proposed
asymmetric distance in (2). Strictly speaking, our asymmetric
distance is not a conventional metric, and we prove that it
satisfies the nonnegativity, symmetry, and triangle inequality
properties, but not the coincidence property, and it is actually
a pseudometric.

1) Non-Negativity: Since d is defined as the L2-norm of a
vector, it is naturally equal or larger than 0.

2) Symmetry: Since

d
({

x p
i , p

}
,
{

xq
j , q

}) = ∥∥U pT x p
i − UqT xq

j

∥∥
2

= ∥∥UqT xq
j − U pT x p

i

∥∥
2

= d
({

xq
j , q

}
,
{

x p
i , p

})
(22)

the distance is symmetric. Note that the reason why we call
the distance asymmetric distance is that the projection bases
are different for different camera views.

3) Triangle Inequality: Note that

||A + B||2 ≤ ||B||2 + ||A||2 (23)

where A and B are vectors. By letting A = U pT x p
i − UqT xq

j
and B = UrT xr

k − U pT x p
i , we obtain

∥∥UrT xr
k − UqT xq

j

∥∥
2

≤ ∥∥UrT xr
k − U pT x p

i

∥∥
2 + ∥∥U pT x p

i − UqT xq
j

∥∥
2. (24)

Thus we have

d
({

xr
k , r

}
,
{

xq
j , q

})

≤ d
({

xr
k , r

}
,
{

x p
i , p

}) + d
({

x p
i , p

}
,
{

xq
j , q

})
. (25)

4) Coincidence: It is noted that d({x p, p}, {xq, q}) = 0
holds if and only if U pT x p = UqT xq , which means
[U p; −Uq ]T [x p; xq] = 0, which could be an underdeter-
mined problem. Therefore, there exist an infinite number of
inputs {x p, p}, {xq, q} that satisfy d({x p, p}, {xq, q}) = 0.
That means d({x p, p}, {xq, q}) = 0 does not always imply
{x p, p} = {xq, q}. However, fortunately, one still has
d({x p, p}, {x p, p}) = ||U pT x p − U pT x p||2 = 0. Therefore,
the coincidence property does not strictly holds, and our
distance is in fact a pseudometric. However, this does not
hurt the model for practical use. It is not practical for visual
surveillance to have the constraint that d({x p, p}, {xq, q})= 0
only when {x p, p} = {xq, q}. In visual surveillance, it
is rare to have the same appearance representation for the
same person at different camera views due to the existence
of view changes and lighting changes. Hence, it is more
practical to say two images are from the same person if they
are having the same representation in the transformed space
(i.e., U pT x p = UqT xq), while ensuring the optimization that
two images of different people have different representations
in that space.

IV. EXPERIMENTAL RESULTS

A. Data Sets and Settings

1) Data Sets: The evaluation of the proposed method is
carried out on six challenging data sets: SYSU [1],
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PRID450S [38], VIPeR [48], CUHK01 [49],
CAVIAR4REID [50], and RAiD [51]. A significant feature
discrepancy can be observed in all the six data sets. PRID450S
contains 450 image pairs recorded from two different but
static surveillance cameras. In this set, masks generated both
automatically and manually were provided to define the
foreground regions of interest. VIPeR contains 632 pedestrian
image pairs captured outdoor with varying viewpoints
and illumination conditions. Each image is scaled to
128 × 48 pixels. CUHK01 contains 971 pedestrians from
two disjoint camera views. Each pedestrian has two samples
per camera view. SYSU contains totally 48 892 images
of 502 pedestrians captured by two cameras. CAVIAR4REID
contains 72 pedestrians of which 50 are viewed in disjoint
camera views and 22 are not. Totally, 1220 images are
included in the data set. RAiD contains four camera views
with two indoor and two outdoor. Fourty-three pedestrians are
included in the data set, resulting in 6920 images. Among the
43 pedestrians, 41 of them appeared in all four camera pairs.
Illumination and pose greatly change across the different
camera views. Although there are other data sets publically
available, such as iLIDS [52] and ETHZ [53], we do not
conduct experiments on them because our method utilize the
camera view label information and those data sets do not
provide it.

2) Features: To validate the effectiveness of the proposed
method, we extracted only low-level color and texture features
in the following experiments. Specifically, we equally parti-
tioned each image into 18 nonoverlapped horizontal stripes.
For each stripe, RGB, HSV, YCbCr, Lab, and YIQ color
features as well as 16 Gabor texture features were extracted.
For each feature channel, a 16-bin histogram was extracted.
In order to balance the weight of each type of feature, we
normalized all histograms by L1-norm. All histograms were
concatenated together to form a single vector. Since PRID450S
provides automatically generated foreground masks, our fea-
tures were extracted from the foreground; for other data sets,
our features were extracted from the whole image.

The extracted feature contains rich information since it
was extracted from dense horizon stripe, including various
color space and texture features. However, it is sensitive to
illumination or viewpoint changes, so features of different
views could suffer great discrepancy.

3) Experimental Protocol: All data sets were evaluated with
the same training protocol: each time half of the pedestrians
were selected randomly to form the training set, and the
remaining pedestrian images were used to form a testing
set. Since there are 22 pedestrians whose images were only
captured in a single view in CAVIAR4REID, we did not select
them for experiments and only used the rest 50 pedestrians
for evaluation. On RAiD, we followed the experimental pro-
tocol in [24], i.e., we used camera pairs 1-3, 1-4, and 3-4
for evaluation [denoted by RAiD(1-3), RAiD(1-4), and
RAiD(3-4)], and each pedestrian has ten images for each view
in the multishot experiment. On SYSU, we randomly pick
three images of each pedestrian in each view for evaluation.

The performance was evaluated by both single-shot
protocol, i.e., only one image each person was registered in

the gallery set, and multishot protocol, i.e., at least two images
each person were registered. For metric learning methods,
when comparing the distance between a probe person and a
gallery person in the gallery set, we calculate the average of
the learned distance between a probe image and each of the
registered images of that gallery person.

The performance was evaluated with both closed-set
protocol and open-set protocol. The cumulative matching
characteristic (CMC) curve was used for evaluating the closed-
set performance. A rank k matching rate in the CMC curve
indicates the percentage of the probe image with correct
matches found in the top k rank against the p gallery images.
In practice, a high rank-1 matching rate is critical and the
top k matching rank matching rate with a small k value is
also important since the top matching images can be verified
by human [8].

To simulate the open-set situation, we also randomly dis-
carded 20% of the gallery images, and thus some of the people
in the probe set are not known from the gallery set. In order to
quantify how well a true target have been verified and how bad
a false target have mistakenly passed through the verification,
we followed [35] to use the true target rate (TTR) and false
target rate (FTR) to evaluate the performance. TTR and FTR
are defined as

TTR = nTT

nT

FTR = nNT

nN
(26)

where nT indicates the number of query target images from
target people, nTT indicates the number of query images
that are verified as one of the target people, nNT indicates
the number of nontarget images from nontarget people, and
nNT indicates the number of query nontarget images that are
verified as one of the target people.

4) Methods for Comparison: We first compared our meth-
ods with symmetric distance learning methods including Rel-
ative Distance Comparison (RDC) [8], LFDA [9], KISSME
[17], Kernel Local Fisher Discriminant Analysis (KLFDA)
[28], and regularized kernel PCCA (rKPCCA) [28]. We also
evaluated the rCCA [54] and CMML [45], which provide
view-specific mappings. In our comparison, all methods used
the same features, and thus the performance difference is only
due to the different processing on the extracted features.

We also discuss the comparison of our methods with the
state-of-the-art methods in Section IV-C, which is on the
system-level comparison in order to compare with the state-
of-the-art.

5) Parameter: In the following experiments, we set both
η and γ to 0.1 for both CVDCA and KCVDCA. In order to
balance the scale of the objective function and the feature con-
sistency regularization term, λ′ was set to 10−3 for CVDCA
and 0.3 for KCVDCA. All parameters were fixed for all data
sets, and we will discuss those parameters in Section IV-D.

B. Comparison With the Distance/Subspace
Learning Methods

1) Closed-Set Evaluation: We first discuss the closed-set
situation where people in the probe set are represented in
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Fig. 4. CMC curves on VIPeR, PRID450S, CUHK01, SYSU, CAVIAR4REID, and RAiD(1-3), RAiD(1-4), and RAiD(3-4). (a) VIPeR. (b) PRID450S.
(c) CUHK01. (d) SYSU. (e) CAVIAR4REID. (f) RAiD(1-3). (g) RAiD(1-4). (h) RAiD(3-4). Best viewed in color.

TABLE I

TOP-RANKED MATCHING RATE (%) ON VIPeR, PRID450S, CUHK01, SYSU, CAVIAR4REID, RAiD(1-3), RAiD(1-4), AND RAiD(3-4)

the gallery set, which is a conventional person reidentification
test. Fig. 4 shows the CMC curves on VIPeR, PRID450S,
CUHK01, SYSU, CAVIAR4REID, and RAiD, respectively,
and Table I shows the top-ranked matching rate on these data
sets.

(K)CVDCA Versus Baseline: We first compared our methods
with the L1 baseline. Table I shows that L1 does not perform
well in all the six data sets. Note that the features we used
consist of low-level color and texture features, which are
sensitive to the environmental changes across views. Since
L1 is a nonlearning distance measure, it is not robust to those
changes. Our methods learn asymmetric distance for better

measuring the distance of pedestrian images across camera
views, and thus they achieve a significant improvement.

(K)CVDCA Versus Symmetric Distance Learning: Symmet-
ric distance learning methods, including (K)LFDA, rKPCCA,
KISSME, Large Margin Nearest Neighbor metric learning
(LMNN), and RDC, are most relevant to our methods. The
major difference is that symmetric distance learning methods
map the original features to a new space with a unitary
mapping, while our methods allow different mappings for
different camera views. As such, symmetric distance learning
assumes that the features used for distance measurements
can be both discriminative and invariant to environmental
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Fig. 5. TTR–FTR curves on VIPeR, PRID450S, CUHK01, SYSU, CAVIAR4REID, RAiD(1-3), RAiD(1-4), and RAiD(3-4). (a) VIPeR. (b) PRID450S.
(c) CUHK01. (d) SYSU. (e) CAVIAR4REID. (f) RAiD(1-3). (g) RAiD(1-4). (h) RAiD(3-4). Better viewed in color.

changes, while asymmetric distance learning does not hold
such a restricted assumption. Hence, our methods weaken the
assumption of distance learning previously used in person
reidentification and achieve notable improvement compared
with symmetric distance learning methods. Among those
symmetric distance learning methods, KLFDA/LFDA achieves
a relatively good performance. KCVDCA achieves 9.02%,
4.76%, 21.18%, 12.15%, 9.00%, 32.64%, 38.48%, and 2.05%
improvements over KLFDA at rank 1 on VIPeR, PRID450S,
CUHK01, SYSU, CAVIAR4REID, RAiD(1-3), RAiD(1-4),
and RAiD(3-4), respectively, and for linear case, the difference
of rank-1 between CVDCA and LFDA is 12.69%, 7.38%,
18.94%, 8.76%, 1.20%, 23.10%, 28.98%, and −6.32% on
those data sets, respectively. The improvement is particularly
notable on SYSU, CUHK01, RAiD(1-3), and RAiD(1-4). The
illumination changes of these data sets are extremely large
[see Fig. 2(a), (f), and (g)], and the difference in features
of two images is caused more by the lighting change than
that by the pedestrian identities. Since our methods learn
asymmetric distance, i.e., view-specific mapping is used for
each view, the influence of lighting change is suppressed and
the distance model for matching is more relevant to pedestrian
identities. A later evaluation in Section IV-D1 further shows
that the performance of our methods would drop notably when
they degrade to symmetric distance models. Also note that
in RAiD(3-4), KCVDCA performs only slightly better than
KLFDA. It is because in the RAiD data set, cameras 3 and 4
are both outdoor cameras, and the environmental condition
such as illumination does not change much [see Fig. 2(h)].
Thus, our methods do not show a significant advantage in
this setting. For indoor–outdoor settings like RAiD(1-3) and
RAiD(1-4), our methods performs much better.

(K)CVDCA Versus Multimodal Learning: Multimodal learn-
ing methods including CMML and rCCA were also evaluated
in our experiments. They are related to our model since they

and ours all can learn view-specific feature transformations.
However, those methods deal with the problem when features
of different views are heterogeneous, while for the person
reidentification problem we discuss in this paper that the
features of person images under different camera views are
not heterogeneous but related. Nevertheless, these methods
do not perform well on person reidentification. In contrast,
our methods model the relation between view-specific feature
transformations with the feature consistency regularization and
thus perform much better.

2) Open-Set Evaluation: In addition to the closed-set per-
formance evaluation, we also report the open-set performance
as Fig. 5. Note that in the open-set setting, some identities
in the probe set are not known in the gallery set, and our
objective is to verify whether a query image comes from the
people in the gallery set. The TTR versus FTR curve defined
by (26) was used for evaluation. Clearly, our method also
achieves the best performance among all methods in compar-
ison. Specifically, when FTR = 10%, the TTRs of KCVDCA
are 96.21%, 96.33%, 93.93%, 89.05%, 44.52%, 75.32%,
90.55%, and 86.93% on VIPeR, PRID450S, CUHK, SYSU,
CAVIAR4REID, RAiD(1-3), RAiD(1-4), and RAiD(3-4),
respectively, while for KLFDA, they are 90.99%, 89.67%,
80.21%, 73.38%, 31.83%, 38.88%, 47.75%, and 85.84%,
respectively.

C. Comparison With the State-of-the-Art Methods

The proposed method is compared with the state-of-the-art
methods using the same evaluation protocols. Tables II–VII
show the top matching rate on the VIPeR, PRID450S,
CUHK01, RAiD and CAVIAR4REID data sets, and Fig. 6
shows the CMC curves. Note that SYSU is a newly released
data set and to the best our knowledge, there is no supervised
method conducted on this data set and therefore it is not used
in this section.
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TABLE II

TOP-RANKED MATCHING RATE (%) ON RAiD(1-3), RAiD(1-4), AND RAiD(3-4)

TABLE III

TOP-RANKED MATCHING RATE (%) ON CAVIAR4REID (N = 5)

TABLE IV

TOP-RANKED MATCHING RATE (%) ON CAVIAR4REID (N = 10)

TABLE V

TOP-RANKED MATCHING RATE (%) ON VIPeR COMPARED
WITH THE STATE-OF-THE-ART METHODS

On VIPeR, MLF + LADF [2] combines the result of Mid-
Level Filter (MLF) and LADF. For fair comparison, we
trained the proposed KCVDCA method using both of our
low-level features and high-level texture features [55] used
by LADF [18], and then simply summed up the score as did
in MLF+LADF [2]. Fig. 6(a) shows that our method achieves
the best performance on this data set. We have compared
our algorithm with the SCNCD [4], LMNN [5], Information
Theoretic Metric Learning (ITML) [7], KISSME [17], Effi-
cient Imposter-based Metric Learning [19], and Large Margin
Nearest Neighbor with Rejection [20] on PRID450S, and com-
pared our algorithm with MLF [2], enriched Saliency Distance
Comparison [3], LMNN [5], ITML [7], SalMatch [22], and
Ref-Reid [39] on CUHK01. Fig. 6(b) and (c) shows that our
approach outperforms other approaches by a large margin.

On the RAiD data set, we have compared our
algorithm with the recently proposed LFDA [9],
FW [24], Network Consistent Re-identification [51],

TABLE VI

TOP-RANKED MATCHING RATE (%) ON PRID450S COMPARED

WITH THE STATE-OF-THE-ART METHODS

TABLE VII

TOP-RANKED MATCHING RATE (%) ON CUHK01 COMPARED

WITH THE STATE-OF-THE-ART METHODS

Wide Area Camera Network [56], Symmetry-Driven
Accumulation of Local Features [57], Implicit Camera
Transfer [58], and Interactive Sparse Ranking (ISR) [30].
Fig. 6(d)–(f) and Table II show that our method could achieve
the state-of-the-art performance on all the three camera pairs.

On CAVIAR4REID, our approach achieves overall bet-
ter results. In particular, FW [24] is comparable with our
approach, as observed from Fig. 6(g) and (h). In comparison
with ISR [30], the proposed method achieves clearly better
results. Note that the testing protocol used by ISR in [30]
is different from ours, i.e., the gallery and probe images are
strictly from different camera views in our setting. The exper-
iment shows that ISR does not perform well when matching
person images from disjoint/different camera views probably
because the gallery images may not be able to reconstruct the
probe one very well.

D. Discussion

1) Effectiveness of Cross-View Consistency Regularization:
As discussed in III-C, the cross-view consistency regulariza-
tion is critical to avoid learning arbitrarily different projec-
tions for different views. Fig. 7(a) shows the effectiveness
of this regularization on PRID450S, for example, and similar
conclusion can be drawn on the others. Note that if the penalty
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Fig. 6. Comparison with the state-of-the-art performance on VIPeR, PRID450S, CUHK01, CAVIAR4REID, and RAiD. (a) VIPeR. (b) PRID450S.
(c) CUHK01. (d)–(f) Experiments conducted on camera pairs 1-3, 1-4, and 3-4 of RAiD, respectively. (g) and (h) Multishot experiments conducted on
CAVIAR4REID with five and ten images per pedestrian, respectively. Best viewed in color.

Fig. 7. Parameter analysis of CVDCA. (a) Parameter of cross-view
consistency regularization. (b) Parameter of intra-view modeling.

term λ′ is infinitely small, the effect of this regularization
vanishes and the rank-1 matching rate is less than 10%;
as λ′ increases, the rank-1 matching rate increases simultane-
ously until it reaches the maximum, which is larger than 50%.
If the penalty term is set too large, it then tends to ignore the
feature discrepancy across views and thus the performance
drops. Note that when this penalty term is infinitely large, the
view-specific mappings would be the same and asymmetric
distance learning degrades to symmetric distance learning.
Hence, the experimental results validate our analysis that a
proper cross-view consistency regularization is critical for
asymmetric distance learning.

2) Effectiveness of Intra-View Modeling: Our model (12)
consists of both cross-view and intra-view modeling. We argue
that the cross-view modeling plays a major role for the person
reidentification problem and the intra-view modeling may
have relative limited effectiveness to the cross-view matching
problem. Fig. 7(b) shows the weight of intra-view modeling η
versus the rank-1 matching rate on the CUHK01 data set and
a similar conclusion can be drawn on the others. Note that
when η = 0, the intra-view modeling part is removed and only
the cross-view modeling contributes to the performance, and

the rank-1 matching rate is 33.8%. Tuning η does boost the
performance and the maximum rank-1 matching rate is 34.6%,
which indicates that the intra-view modeling is useful, albeit
limited.

Note that the widely used testing protocol for person
reidentification is to match pedestrians across camera views,
while the intra-view matching is not the concern. Hence, it is
reasonable that the cross-view modeling plays more important
part in the modeling. The intra-view modeling to an extent is
related to the matching, and thus incorporating it to the model
could help tackling the cross-view matching problem.

3) Brief Analysis of the Extracted Features: Throughout
the experimental section, we have shown that our asymmet-
ric distance performs better than the symmetric ones. Our
explanation is that using different mappings for different
camera views, we can extract more discriminative features,
even if those features are divergent for each view. On the
contrary, using a unitary mapping for all views would have
to discard some of the discriminative features if they are
divergent.

Taking PRID450S as an example, we give an analysis on
the difference in features extracted by the asymmetric distance
learning method (CVDCA) and the symmetric distance learn-
ing method (LFDA). We semantically divided the features into
color features (including RGB, HSV, YCbCr, Lab, and YIQ
features) and texture features (the Gabor features). As shown
in Fig. 8, color features are more discriminative than texture
features, as using color features results in better performance
than using texture features. However, as shown in Fig. 3,
color features on this data set are very different across the
two camera views, while in Fig. 9, we can observe that texture
features are much more consistent across the two views.

We trained CVDCA and LFDA with the color + texture
features and obtained the projection bases Ua and Ub

(for LFDA, Ua = Ub). Then we calculated the energy for
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Fig. 8. Performance using different feature types.

Fig. 9. Illustration of Gabor features of PRID450S. Similar to Fig. 3, the first
row shows the Gabor feature distributions of (1/na,b

p )
∑

i xa
i and the second

row shows those of (1/na,b
p )

∑
j xb

j .

Fig. 10. Energy distribution of different feature types. Energy is defined
as in (27). We compare the percentage of energy of different feature types
between CVDCA and LFDA.

each type of features as follows:
E( f ) =

∑

k

∑

j∈B f

(
Ua(k, j)2 + Ub(k, j)2) (27)

where f ∈ {RGB, HSV, YCbCr, Lab, YIQ, Gabor} indicates
the set of feature types, B f is the set of indices of feature
type f , and Ua(k, j) is the kth column and j th row of
matrix Ua . Fig. 10 shows the energy distribution of different
feature types of CVDCA and LFDA. It shows that CVDCA
allots more energy to the color features, while LFDA allots
more to the texture features. Recall that color features are more
discriminative but divergent, while texture features are less
discriminative but more divergent. Therefore, we conclude that
more color features, which is shown to be more discriminative,
are preserved by our approach.

V. CONCLUSION

In this paper, we address the feature discrepancy problem
across nonoverlapping camera views for person reidentifica-
tion. A CVDCA method, which forms an asymmetric distance
model for matching person images between disjoint camera
views by learning view-specific mappings, is proposed to over-
come this problem. To model the correlation nature of feature
transformations of different views, a cross-view consistency
regularization is introduced in our model. The experimental
results demonstrate that: 1) the asymmetric distance model
performs notably better than the symmetric ones and 2) the
influence of feature discrepancy can be effectively alleviated
by view-specific modeling.

In this work, we use Euclidean distance as the measure
of the discrepancy of different mappings in the cross-view
consistency regularization, which implicitly assumes Gaussian
distribution for the projection matrices. However, how to relax
such an assumption remains a future issue to investigate.
In our future works, we would like to investigate other
examples of the Bregman distance, which could work better
for more general distributions in the exponential families.

APPENDIX

PROBABILISTIC INTERPRETATION

In the following, we will give a probabilistic interpretation
of the cross-view consistency regularization. The cross-view
consistent regularization can be viewed as prior knowledge of
the projection matrices.

The term ||U pT x p
i − UqT xq

j ||22 can be rewritten as

||U pT x p
i − UqT xq

j ||22
= [x p

i ; xq
j ]T [U p; −Uq ][U p; −Uq ]T [x p

i ; xq
j ]

= tr([x p
i ; xq

j ][x p
i ; xq

j ]T [U p; −Uq ][U p; −Uq ]T )

= vec([x p
i ; xq

j ][x p
i ; xq

j ]T )T vec([U p; −Uq ][U p; −Uq ]T ),
(28)

where [A; B] means concatenating vector/matrix A and B in
column, tr(A) is the trace of matrix A, and vec(A) denotes
vectorizing matrix A. Therefore, (7) is related to a specific
distribution in the exponential family

pcross(D|U p, p = 1, 2, · · · , N) = κ
∏N−1

p=1
∏N

q=p+1∏n p

i=1
∏nq

j=1 ex p(−W p,q
i j u(x p

i , xq
j )

T η(U p, Uq )),
(29)

where D is the notion of a dataset,
u(x p

i , xq
j ) = vec([x p

i ; xq
j ][x p

i ; xq
j ]T ), η(U p, Uq ) =

vec([U p; −Uq ][U p; −Uq ]T ), and κ is a normalization
term.

Similarly, (8) is related to another distribution in an expo-
nential family

pintra(D|U p, p = 1, 2, · · · , N) = κ
∏N

p=1
∏n p

i=1
∏n p

j=1
ex p(−W p,p

i j u(x p
i , x p

j )T η(U p, U p)).
(30)

Therefore, the objective function of Eq. (10) can be rewrit-
ten as

max
U p,p=1,2,··· ,N

pcross ∗ pintra, (31)
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which can be interpreted as maximizing the likelihood proba-
bility.

With this probabilistic interpretation, the regularization can
be viewed as prior knowledge of U p and Uq , which is
pprior = ∏N−1

p=1
∏N

q=p+1 ex p(−dF(U p, Uq )). Integrating this
prior knowledge, the optimization problem turns to

max
U p,p=1,2,··· ,N

pcross ∗ pintra ∗ pprior . (32)

Note that different Bregman distance corresponds to differ-
ent prior distribution. Without further knowledge of the projec-
tion matrices, it is more reasonable to assume that the differ-
ence of two projection matrices follows the Gaussian distribu-
tion, which means pprior = κ

∏N−1
p=1

∏N
q=p+1 ex p(−λ||U p −

Uq ||22). Note that (12) can be obtained by imposing −log
operator to (32). In this way, the CVDCA has an probabilistic
interpretation with a Gaussian prior assumption. Our empirical
results show that this Gaussian assumption results in satisfying
performance, and it also makes the optimization problem easy
to solve.
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