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Abstract—The challenge of person re-identification (re-id) is to match individual images of the same person captured by different non-

overlapping camera views against significant and unknown cross-view feature distortion. While a large number of distance metric/

subspace learning models have been developed for re-id, the cross-view transformations they learned are view-generic and thus

potentially less effective in quantifying the feature distortion inherent to each camera view. Learning view-specific feature

transformations for re-id (i.e., view-specific re-id), an under-studied approach, becomes an alternative resort for this problem. In this

work, we formulate a novel view-specific person re-identification framework from the feature augmentation point of view, called Camera

coRrelation Aware Feature augmenTation (CRAFT). Specifically, CRAFT performs cross-view adaptation by automatically measuring

camera correlation from cross-view visual data distribution and adaptively conducting feature augmentation to transform the original

features into a new adaptive space. Through our augmentation framework, view-generic learning algorithms can be readily generalized

to learn and optimize view-specific sub-models whilst simultaneously modelling view-generic discrimination information. Therefore, our

framework not only inherits the strength of view-generic model learning but also provides an effective way to take into account view

specific characteristics. Our CRAFT framework can be extended to jointly learn view-specific feature transformations for person re-id

across a large network with more than two cameras, a largely under-investigated but realistic re-id setting. Additionally, we present a

domain-generic deep person appearance representation which is designed particularly to be towards view invariant for facilitating

cross-view adaptation by CRAFT. We conducted extensively comparative experiments to validate the superiority and advantages of

our proposed framework over state-of-the-art competitors on contemporary challenging person re-id datasets.

Index Terms—Person re-identification, adaptive feature augmentation, view-specific transformation

Ç

1 INTRODUCTION

THE extensive deployment of close-circuit television cam-
eras in visual surveillance results in a vast quantity

of visual data and necessitates inevitably automated data
interpretation mechanisms. One of the most essential visual
data processing tasks is to automatically re-identify indi-
vidual person across non-overlapping camera views distrib-
uted at different physical locations, which is known as person
re-identification (re-id). However, person re-id by visual

matching is inherently challenging due to the existence of
many visually similar people and dramatic appearance
changes of the same person arising from the great cross-
camera variation in viewing conditions such as illumination,
viewpoint, occlusions and background clutter [1] (Fig. 1).

In current person re-id literature, the best performers are
discriminative learning basedmethods [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21]. Their essential objective is to establish a reliable re-id
matching model through learning identity discriminative
information from the pairwise training data. Usually, this is
achieved by either view-generic modelling (e.g., optimizing a
common model for multiple camera views) [5], [6], [8], [10],
[13], [15] or view-specificmodelling scheme (e.g., optimizing a
separate model for each camera view) [16], [17], [18], [19]. The
formermainly focuses on the shared view-generic discrimina-
tive learning but does not explicitly take the individual view
information (e.g., via camera view labels) into modelling.
Given that person re-id inherently incurs dramatic appear-
ance change across camera views due to the great difference
in illumination, viewpoint or camera characteristics, the
view-generic approach is inclined to be sub-optimal in quanti-
fying the feature distortion caused by these variations in indi-
vidual camera views.While the latter approachmay enable to
mitigate this problem by particularly considering view label
information during modelling, most of these methods do not
explicitly take into consideration the feature distribution
alignment across camera views so that cross-view data adap-
tation cannot be directly quantified and optimized during
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model learning as view-generic counterparts do. Addition-
ally, existing view-specific methods are often subject to lim-
ited scalability for person re-id across multiple (more than
two) camera views in terms of implicit assumptions and for-
mulation design.

In view of the analysis above, we formulate a novel view-
specific person re-identification framework, named Camera
coRrelation Aware Feature augmenTation (CRAFT), capable of
performing cross-view feature adaptation by measuring
cross-view correlation from visual data distribution and car-
rying out adaptive feature augmentation to transform the
original features into a new augmented space. Specifically,
we quantify the underlying camera correlation in our
framework by generalizing the conventional zero-padding,
a non-parameterized feature augmentation mechanism, to a
parameterized feature augmentation. As a result, any two
cameras can be modelled adaptively but not independently,
whereas the common information between camera views
have already been quantified in the adaptive space.
Through this augmentation framework, view-generic learn-
ing algorithms can be readily generalized to induce view-
specific sub-models whilst involving simultaneously view-
generic discriminative modelling. More concretely, we
instantialize our CRAFT framework with Marginal Fisher
Analysis (MFA) [22], leading to a re-id method instance
called CRAFT-MFA. We further introduce camera view dis-
crepancy (CVD) regularization in order to append extra
modelling capability for controlling the correlation degree
between view-specific sub-models. This regularization can
be viewed as a complementary means of incorporating cam-
era correlation modelling on top of the proposed view-spe-
cific learning strategy. Moreover, our CRAFT framework
can be flexibly deployed for re-id across multiple ð>2Þ
camera views by jointly learning a unified model, which is
largely under-studied in existing approaches.

Apart from cross-view discriminative learning, we also
investigate domain-generic (i.e., independent of target data
or domain) person appearance representation, with the aim
to make person features towards view invariant for facilitat-
ing the cross-view adaptation process using CRAFT. In par-
ticular, we explore the potential of deep learning techniques
for person appearance description, inspired by the great
success of deep neural networks in other related applica-
tions like object recognition and detection [23], [24], [25].
Differing significantly from existing deep learning based re-
id approaches [26], [27], [28], [29] that typically learn
directly from the small person re-id training data, we
instead utilize large auxiliary less-related image data. This
strategy allows to not only avoid the insufficient training
data problem and address the limited scalability challenge
in deep re-id models, but also yield domain-generic person
features with more tolerance to view variations.

The main contributions of this work include: (I) We pro-
pose a camera correlation aware feature augmentation per-
son re-id framework called CRAFT. Our framework is able
to generalize existing view-generic person re-identification
models to perform view-specific learning. A kernelization
formulation is also presented. (II) We extend our CRAFT
framework to jointly learn view-specific feature transforma-
tions for person re-id across a large network involving more
than two cameras. Although this is a realistic scenario, how
to build an effective unified re-id model for an entire camera
network is still under-explored in existing studies. (III) We
present a deep convolutional network based appearance fea-
ture extraction method in order to extract domain-generic
andmore view invariant person features. To our knowledge,
this is the first attempt that explores deep learningwith large
auxiliary non-person image data for constructing discrimi-
native re-id features. For evaluating our method, we con-
ducted extensive comparisons between CRAFT and a
variety of state-of-the-art models on VIPeR [30], CUHK01
[31], CUHK03 [26], QMUL GRID [32], and Market-1501 [33]
person re-id benchmarks.

2 RELATED WORK

Distance Metric Learning in Person Re-Id. Supervised learning
based methods [6], [8], [9], [11], [12], [13], [14], [15], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43] dominate cur-
rent person re-id research by achieving state-of-the-art per-
formance, whilst a much fewer unsupervised re-id methods
[44], [45], [46], [47], [48], [49] have been proposed with
much inferior results yielded. This is because large cross-
camera variations in viewing conditions may cause dra-
matic person appearance changes and arise great difficulties
for accurately matching identities. Discriminative learning
from re-id training data is typically considered as a neces-
sary and effective strategy for reliable person re-id. Notable
re-id learning models include PRDC [8], LADF [9], KISSME
[13], PCCA [6], LFDA [10], XQDA [12], PSD[15], Metric
Ensemble [14], DNS [39], SCSP [40], and so forth.

All the above re-idmethods are mainly designed for learn-
ing the common view-generic discriminative knowledge, but
ignoring greatly the individual view-specific feature variation
under each camera view. This limitation can be relaxed by the
recent view-specificmodelling strategy capable of learning an
individual matching function for each camera view. Typical
methods of such kind include the CCA (canonical correlation
analysis) based approaches ROCCA [16], refRdID [17],
KCCA-based re-id [18], and CVDCA [19]. However, they are
less effective in extracting the shared discriminative informa-
tion between different views, because these CCA-basedmeth-
ods [16], [17], [18] do not directly/simultaneously quantify
the commonness and discrepancy between views during
learning transformation, so that they cannot identify accu-
rately what information can be shared between views. While
CVDCA [19] attempts to quantify the inter-view discrepancy,
it is theoretically restricted due to the stringent Gaussian dis-
tribution assumption on person image data, which may yield
sub-optimal modelling at the presence of typically complex/
significant cross-view appearance changes. View-specific
modelling for person re-id remains under studied to a great
extent.

Fig. 1. Illustration of person re-id challenges [1]. Left: Great visual simi-
larity among different people. Right: Large cross-view appearance varia-
tions of the same people, each person within a dotted box.

CHEN ET AL.: PERSON RE-IDENTIFICATION BY CAMERA CORRELATION AWARE FEATURE AUGMENTATION 393

Authorized licensed use limited to: MIT Libraries. Downloaded on June 12,2021 at 05:18:19 UTC from IEEE Xplore.  Restrictions apply. 



In this work, we present a different view-specific person
re-id framework, characterized by a unique capability of
generalizing view-generic distance metric learning methods
to perform view-specific person re-id modelling, whilst still
preserving their inherent learning strength. Moreover, our
method can flexibly benefit many existing distance metric/
subspace-based person re-id models for substantially
improving re-id performance.

Feature Representation in Person Re-Id. Feature representa-
tion is another important issue for re-id. Ideal person image
features should be sufficiently invariant against viewing
condition changes and generalized across different cam-
eras/domains. To this end, person re-id images are often
represented by hand-crafted appearance pattern based fea-
tures, designed and computed according to human domain
knowledge [4], [12], [44], [45], [46], [50], [51], [52], [53], [54],
[55]. These features are usually constituted by multiple dif-
ferent types of descriptors (e.g., color, texture, gradient,
shape or edge) and greatly domain-generic (e.g., no need to
learn from target labelled training data). Nowadays, deep
feature learning for person re-id has attracted increasing
attention [26], [27], [29], [56], [57], [58], [59], [60], [61], [62].
These alternatives allow benefiting from the powerful
modelling capacity of neural networks, and are thus suit-
able for joint learning even given very heterogeneous train-
ing data [29]. Often, they require a very large collection of
labelled training data and can easily suffer from the model
overfitting risk in realistic applications when data are not
sufficiently provided [14], [39]. Also, these existing deep re-
id features are typically domain-specific.

In contrast, our method exploits deep learning techniques
for automatically mining more diverse and view invariant
appearance patterns (versus restricted hand-crafted ones)
from auxiliary less-relevant image data (versus using the
sparse person re-id training data), finally leading tomore reli-
able person representation. Furthermore, our deep feature is
largely domain-generic with no need for labelled target train-
ing data. Therefore, our method possesses simultaneously
the benefits of the two conventional feature extraction para-
digms above. The advantages of our proposed features over
existing popular alternatives are demonstrated in our evalua-
tions (Section 5.2 and Table 5).

Domain Adaptation (DA). In a broader context, our cross-
view adaptation for re-id is related to but different vitally
from domain adaptation [63], [64], [65], [66], [67], [68], [69],
[70]. Specifically, the aim of existing DA methods is to
diminish the distribution discrepancy between the source
and target domains, which is similar conceptually to our
method. However, DA models assume typically that the
training and test classes (or persons) are overlapped, whilst
our method copes with disjoint training and test person
(class) sets with the objective to learn a discriminative
model that is capable of generalizing to previously unseen
classes (people). Therefore, conventional DA methods are
less suitable for person re-id.

Feature Augmentation. Our model formulation is also
related to the zero padding technique [71], [72] and feature
data augmentation methods in [67], [69]. However, ours is
different substantially from these existing methods. Specifi-
cally, [67] is designed particularly for a heterogeneous
modelling problem (i.e., different feature representations are

used in distinct domains), whilst person re-id is typically
homogeneous and therefore not suitable. More critically,
beyond all these conventional methods, our augmentation
formulation uniquely considers the relation between trans-
formations of different camera views (even if more than two)
and embeds intrinsic camera correlation into the adaptive
augmented feature space for facilitating cross-view feature
adaptation and finally person identity associationmodelling.

3 TOWARDS VIEW INVARIANT STRUCTURED

PERSON REPRESENTATION

Wewant to constructmore view change tolerant person re-id
features. To this end, we explore the potential of deep convo-
lutional neural network (CNN), encouraged by its great gen-
eralization capability in related applications [25], [73].
Typically, one has only sparse (usually hundreds or thou-
sands) labelled re-id training samples due to expensive data
annotation. This leads to great challenges for deriving effec-
tive domain-generic features using deep models [26], [27],
[74].We resolve the sparse training data problem by learning
the deep model with a large auxiliary image dataset, rather
than attempting to learn person discriminative features from
the small re-id training data. Our intuition is that, a generic
person description relies largely on the quality of atomic
appearance patterns. Naturally, our method can be largely
domain-generic in that appearance patterns learned from
large scale data are likely to bemore general. To this purpose,
we first exploit the AlexNet1 [23] convolutional neural net-
work to learn from the ILSVRC 2012 training dataset for
obtaining diverse patterns. Then, we design reliable descrip-
tors to characterize the appearance of a given person image.
We mainly leverage the lower convolutional (conv) layers,
unlike [24] that utilizes the higher layers (e.g., the 5th conv
layer, 6th/7th fully connected (fc) layers). The reasons are:
(1) Higher layers can be more likely to be task-specific (e.g.,
sensitive to general object categories rather than person iden-
tity in our case), and may have worse transferability than
lower ones [24], [73] (see our evaluations in Table 5). In con-
trast, lower conv layers correspond to low-level visual fea-
tures such as color, edge and elementary texture patterns
[73], and naturally have better generality across different
tasks. (2) Features from higher layers are possibly contami-
nated by dramatic variations in human pose or background
clutter due to their large receptive fields and thus not suffi-
ciently localized for person re-id.

We present two person descriptors based on feature
maps of the first two conv layers,2 as detailed below.

Structured Person Descriptor. The feature data from con-
vnet layers are highly structured, e.g., they are organized in
form of multiple 2-D feature maps. Formally, we denote by
FFc 2 Rhc�wc�mc the feature maps of the cth (c 2 f1; 2g) layer,
with hc/wc the height/width of feature maps, and mc the
number of conv filters. In our case, h1 ¼ w1 ¼ 55;m1 ¼ 96;
and h2 ¼ w2 ¼ 27;m2 ¼ 256. For the cth layer, FFcði; j; kÞ rep-
resents the activation of the kth filter on the image patch
centred at the pixel ði; jÞ. Given the great variations in person

1. Other networks such as the VggNet [75] and GoogLeNet [76]
architectures can be considered without any limitation.

2. More conv layers can be utilized similarly but at the cost of
increasing the feature dimension size.
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pose, we further divide each feature map into horizontal
strips with a fixed height hs for encoding spatial structure
information and enhancing pose invariance, similar to ELF
[51] andWHOS [46]. We empirically set hs ¼ 5 in our evalua-
tion for preserving sufficient spatial structure.We then extract
the intensity histogram (with bin size 16) from each strip for
every feature map. The concatenation of all these strip
based histograms forms the Histogram of Intensity Pattern
(HIP) descriptor, with feature dimension 37; 376 ¼ 16ðbinsÞ �
11ðstripsÞ � 96ðm1Þþ 16ðbinsÞ � 5ðstripsÞ � 256ðm2Þ. As such,
HIP is inherently structured, containingmultiple components
with different degrees of pattern abstractness.

View-Invariant Person Descriptor. The proposed HIP
descriptor encodes completely the activation information of
all feature maps, regardless their relative saliency and noise
degree. This ensures pattern completeness, but being poten-
tially sensitive to cross-view covariates such as human pose
changes and background discrepancy. Tomitigate this issue,
we propose to selectively use these feature maps for intro-
ducing further view-invariance capability. This is realized
by incorporating the activation ordinal information [77],
[78], yielding another descriptor calledHistogram of Ordinal
Pattern (HOP). We similarly encode the spatial structure
information by the same horizontal decomposition asHIP.

Specifically, we rank all activations fFFcði; j; kÞgmc
k¼1 in

descendant order and get the top-k feature map indices,
denoted as

ppcði; jÞ ¼ ½v1; v2; . . . ; vk�; (1)

where vi is the index of the ith feature map in the ranked
activation list. We fix k ¼ 20 in our experiments. By repeat-
ing the same ranking process for each image patch, we
obtain a new representation PPc 2 Rhc�wc�k with elements
ppcði; jÞ. Since PPc can be considered as another set of feature
maps, we utilize a similar pooling way as HIP to construct
its histogram-like representation, but with bin size mc for
the cth layer. Therefore, the feature dimension of HOP is
46;720 ¼ 96ðbins;m1Þ � 11ðstripsÞ � 20ðkÞ þ 256ðbins;m2Þ�
5ðstripsÞ � 20ðkÞ. Together with HIP, we call our final fused
person feature as HIPHOP, with the total dimension
84;096 ¼ 46;720þ 37;376.

Feature Extraction Overview. We depict the main steps of
constructing our HIPHOP feature. First, we resize a given
image into the size of 227� 227, as required by AlexNet
(Fig. 2a). Second, we forward propagate the resized image
through the AlexNet (Fig. 2b). Third, we obtain the feature
maps from the 1st and 2nd conv layers (Fig. 2c). Fourth, we

compute the HIP (Fig. 2d) and HOP (Fig. 2e) descriptors.
Finally, we composite the HIPHOP feature for the given
person image by vector concatenation (Fig. 2f). For approxi-
mately suppressing background noise, we impose an Epa-
nechnikov kernel [46] as weight on each activation map
before computing histogram.

4 CAMERA CORRELATION AWARE FEATURE
AUGMENTATION FOR RE-ID

We formulate a novel view-specific person re-id framework,
namely Camera coRrelation Aware Feature augmenTation,
to adapt the original image features into another view adap-
tive space, where many view-generic methods can be read-
ily deployed for achieving view-specific discrimination
modelling. In the following, we formulate re-id as a feature
augmentation problem, and then present our CRAFT frame-
work. We first discuss the re-id under two non-overlapping
camera views and later generalize our model under multi-
ple (more than two) camera views.

4.1 Re-Id Model Learning Under Feature
Augmentation

Given image data from two non-overlapping camera views,
namely camera a and camera b, we reformulate person re-id
in a feature augmentation framework. Feature augmenta-
tion has been exploited in the domain adaptation problem.
For example, Daum�e III [69] proposed the feature mapping

functions rsðxxÞ ¼ ½xx>; xx>; ð00dÞ>�> (for the source domain)

and rtðxxÞ ¼ ½xx>; ð00dÞ>; xx>�> (for the target domain) for
homogeneous domain adaptation, with xx 2 Rd denoting the
sample feature, 00d the d column vector of all zeros, d the fea-
ture dimension, and the superscript > the transpose of a
vector or a matrix. This can be viewed as incorporating the
original feature into an augmented space for enhancing the
similarities between data from the same domain and thus
increasing the impact of same-domain (or same-camera)
data. For person re-id, this should be unnecessary given its
cross-camera matching nature. Without original features in
augmentation, they are resorted to zero padding, a tech-
nique widely exploited in signal transmission [71], [72].

Zero Padding. Formally, the zero padding augmentation
can be formulated as

~XXa
zp ¼

IId�d

OOd�d

� �
XXa; ~XXb

zp ¼ OOd�d

IId�d

� �
XXb ; (2)

Fig. 2. Illustration of extracting the proposed HIPHOP feature. (a) A resized input person image with 227� 227 pixel size. (b) Forward propagate the
resized image through the whole AlexNet architecture. (c) Obtain the feature maps of the 1st and 2nd convolutional layers. (d) Compute the HIP
descriptor by pooling activation intensity into histograms across different horizontal strips and feature maps. (e) Extract the HOP descriptor by rank-
ing the localized activations and then pooling the top-k feature map indices over all horizontal strips and feature maps. (f) Construct the final HIPHOP
feature by fusion.
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where XXa ¼ ½xxa
1; . . . ; xx

a
na
� 2 Rd�na and XXb ¼ ½xxb

1; . . . ; xx
b
nb
� 2

Rd�nb represent the column-wise image feature matrix from

camera a and b; ~XXa
zp ¼ ½~xxa

zp;1; . . . ; ~xx
a
zp;na

� 2 R2d�na and
~XXb
zp ¼ ½~xxbzp;1; . . . ; ~xxb

zp;nb
� 2 R2d�nb refer to augmented feature

matrices; na and nb are the training sample numbers of cam-
era a and camera b, respectively; IId�d and OOd�d denote the
d� d identity matrix and zero matrix, respectively.

Re-Id Reformulation. The augmented features ~XXf
zp

(f 2 fa; bg) can be incorporated into different existing view-
generic distance metric or subspace learning algorithms.
Without loss of generality, we take the subspace learning as
example in the follows. Specifically, the aim of discrimina-
tive learning is to estimate the optimal projections
ŴW 2 R2d�m (with m the subspace dimension) such that after
projection zzf ¼ ŴW>~xxf

zp, where f 2 fa; bg and ~xxf
zp is an aug-

mented feature defined in Eqn. (2), one can effectively dis-
criminate between different identities by Euclidean
distance. Generally, the objective function can be written as

ŴW ¼ min
WW

fobjðWW> ~XXzpÞ; (3)

where ~XXzp ¼ ½ ~XXa
zp;

~XXb
zp� ¼ ½~xxzp;1; . . . ; ~xxzp;n�, n ¼ na þ nb. ~XXzp

is the combined feature data matrix from camera a and cam-
era b.

Clearly, ŴW can be decomposed into two parts as

ŴW ¼ ½ðŴWaÞ>; ðŴWbÞ>�>; (4)

with ŴWa 2 Rd�m and ŴWb 2 Rd�m corresponding to the
respective projections (or sub-models) for camera a and b.
This is due to the zero padding based feature augmentation
(Eqn. (2))

ŴW> ~XXa
zp ¼ ðŴWaÞ>XXa;

ŴW> ~XXb
zp ¼ ðŴWbÞ>XXb:

(5)

Clearly, zero padding allows view-generic methods to simul-
taneously learn two view-specific sub-models, i.e., ŴWa for
view a and ŴWb for view b, and realize view-specificmodelling
[16], [17], [18], likely better aligning cross-view image data
distribution [19], [69].

For better understanding, we take an example in 1-D fea-
ture space. Often, re-id feature data distributions from dif-
ferent camera views are misaligned due to the inter-camera

viewing condition discrepancy (Fig. 3a). With labelled train-
ing data, the transformation learned in Eqn. (3) aims to
search for an optimized projection in the augmented feature
space (the red line in Fig. 3b) such that cross-view data dis-
tributions are aligned and thus good for matching images of
the same person across camera views. Clearly, the zero-pad-
ding treats each camera view independently by optimizing
two separated view-specific sub-models and therefore
allows to better quantify the feature distortion of either cam-
era view. Nonetheless, as compared to a single view-generic
model, this doubled modelling space may unfavourably
loosen inter-camera inherent correlation (e.g., the “same”
person with “different” appearance in the images captured
by two cameras with distinct viewing conditions). This may
in turn make the model optimization less effective in captur-
ing appearance variation across views and extracting shared
view-generic discriminative cues.

To overcome the above limitation, we design particularly
the camera correlation aware feature augmentation, which
allows for adaptively incorporating the common informa-
tion between camera views into the augmented space whilst
retaining the capability of well modelling the feature distor-
tion of individual camera views.

4.2 Camera Correlation Aware Feature
Augmentation

The proposed feature augmentation method is performed
in two steps: (I) We quantify automatically the common-
ness degree between different camera views. (II) We
exploit the estimated camera commonness information for
adaptive feature augmentation.

(I) Quantifying Camera Commonness by Correlation. We
propose exploiting the correlation in image data distribu-
tions for camera commonness quantification. Considering
that many different images may be generated by any cam-
era, we represent a camera by a set of images captured by
itself, e.g., a set of feature vectors. We exploit the available
training images captured by both cameras for obtaining
more reliable commonness measure.

Specifically, given image featuresXXa andXXb for camera a
and b, respectively, we adopt the principle angles [79] to
measure the correlation between the two views. In particu-
lar, first, we obtain the linear subspace representations by
the principle component analysis, GGa 2 Rna�r for XXa and
GGb 2 Rnb�r for XXb, with r the dominant component number.
In our experiments, we empirically set r ¼ 100. Either GGa

or GGb can then be seen as a data point on the Grassmann
manifold—a set of fixed-dimensional linear subspaces
of Euclidean space. Second, we measure the similarity
between the two manifold points with their principle angles
(0 � u1 � � � � � uk � � � � � ur � p

2 ) defined as

cos ðukÞ ¼ max
qqj2spanðGGaÞ

max
vvk2spanðGGbÞ

qq>k vvk;

s.t. qq>k qqk ¼ 1; vv>k vvk ¼ 1;

qq>k qqi ¼ 0; vv>k vvi ¼ 0; i 2 ½0; k� 1�;
(6)

where spanð�Þ denotes the subspace spanned by the column
vectors of a matrix. The intuition is that, principle angles
have good geometry interpretation (e.g., related to the man-
ifold geodesic distance [80], [81]) and their cosines cos ðukÞ

Fig. 3. An illustration of zero padding based feature augmentation. (a)
The data distribution in the original feature space from camera view a
(the blue curve) and b (the green curve). (b) The augmented feature
space by zero padding. The dashed blue and green curves represent
the projected features with respect to the projection basis indicated by
the solid red line. The two dashed lines imply feature projection opera-
tion. Note that the probability density axis is not plotted in (b) for demon-
stration simplicity.
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are known as canonical correlations. Finally, we estimate the
camera correlation (or commonness degree) v as

v ¼ 1

r

Xr

k¼1

cos ðukÞ; (7)

with cos ðukÞ computed by Singular Value Decomposition

ðGGaÞ>GGb ¼ QQ cos ðQÞVV >; (8)

where cos ðQÞ ¼ diagð cos ðu1Þ; cos ðu2Þ; . . . cos ðurÞÞ, QQ ¼ ½qq1;
qq2; . . . ; qqr�, and VV ¼ ½vv1; vv2; . . . ; vvr�.

(II) Adaptive Feature Augmentation. Once obtaining the
camera correlation v, we want to incorporate it into feature
augmentation. To achieve this, we generalize the zero pad-
ding (Eqn. (2)) to

~XXa
craft ¼

RR
MM

� �
XXa; ~XXb

craft ¼
MM
RR

� �
XXb ; (9)

where RR and MM refer to the d� d augmentation matrices.
So, zero padding is a special case of the proposed feature
augmentation (Eqn. (9)) where RR ¼ IId�d andMM ¼ OOd�d.

With some view-generic discriminative learning algo-
rithm, we can learn an optimal model WW ¼ ½ðWWaÞ>; ðWWbÞ>�>
in our augmented space. Then, feature mapping functions
can be written

fað ~XXa
craftÞ ¼ WW> ~XXa

craft ¼ ðRR>WWa þMM>WWbÞ>XXa;

fbð ~XXb
craftÞ ¼ WW> ~XXb

craft ¼ ðMM>WWa þRR>WWbÞ>XXb:
(10)

Compared to zero padding (Eqn. (5)), it is clear that the fea-
ture transformation for each camera view is not treated
independently in our adaptive feature augmentation (Eqn.
(10)). Instead, the transformations of all camera views are
intrinsically correlated and meanwhile being view-specific.

However, it is non-trivial to estimate automatically the
augmentation matrices RR and MM with the estimated camera
correlation information accommodated for enabling more
accurate cross-view discriminative analysis (Section 4.3).
This is because a large number of (2d2) parameters are
required to be learned given the typically high feature
dimensionality d (e.g., tens of thousands) but only a small
number of (e.g., hundreds) training data available. Instead
of directly learning from the training data, we propose to
properly design RR andMM for overcoming this problem as

RR ¼ 2� v

$
IId�d; MM ¼ v

$
IId�d; (11)

where v is the camera correlation defined in Eqn. (7) and

$ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� vÞ2 þ v2

q
is the normalization term. In this way,

camera correlation is directly embedded into the feature
augmentation process. Specifically, when v ¼ 0, which
means the two camera views are totally uncorrelated with
no common property, we have MM ¼ OOd�d and RR ¼ IId�d,
and our feature augmentation degrades to zero padding.
When v ¼ 1, which means the largest camera correlation,
we have RR ¼ MM thus potentially similar view-specific sub-
models, i.e., strongly correlated each other. In other words,
MM represents the shared degree across camera views whilst
RR stands for view specificity strength, with their balance
controlled by the inherent camera correlation.

By using Eqn. (11), the view-specific feature mapping
functions in Eqn. (10) can be expressed as

fað ~XXa
craftÞ ¼ 2� v

$
ðWWaÞ>|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

specificity

XXa þ v

$
ðWWbÞ>|fflfflfflfflffl{zfflfflfflfflffl}

adaptiveness

XXa;

fbð ~XXb
craftÞ ¼ v

$
ðWWaÞ>|fflfflfflfflffl{zfflfflfflfflffl}

adaptiveness

XXb þ 2� v

$
ðWWbÞ>|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

specificity

XXb:
(12)

Obviously, the mapped discriminative features for each
camera view depend on its respective sub-model (weighted
by 2�v

$ , corresponding to view-specific modelling) as well as
the other sub-model (weighted by v

$, corresponding to
view-generic modelling). As such, our proposed transfor-
mations realize the joint learning of both view-generic and
view-specific discriminative information. We call this cross-
view adaptivemodelling.

Model Formulation Analysis—We examine the proposed
formulation by analyzing the theoretical connection among
model parameters fRR;MM;WWg. Note that in ourwholemodel-
ling, the augmentation matrices RR and MM (Eqn. (11)) are
appropriately designed with the aim for embedding the
underlying camera correlation into a new feature space,
whereasWW (Eqn. (3)) is automatically learned from the train-
ing data. Next, we demonstrate that learning WW alone is
sufficient to obtain the optimal solution.

Formally, we denote the optimal augmentation matrices

RRopt ¼ RRþrRR; MMopt ¼ MM þrMM; (13)

withrRR the difference (e.g., the part learned from the train-
ing data by some ideal algorithm) between our designed RR
and the assumed optimal one RRopt (similarly for rMM). The
multiplication operation between MM (or RR) and WW in Eqn.
(12) suggests that

ðRRþrRRÞ>WWa þ ðMM þrMMÞ>WWb

¼ RR>ðWWa þrWWaÞ þMM>ðWWb þrWWbÞ
ðMM þrMMÞ>WWa þ ðRRþrRRÞ>WWb

¼ MM>ðWWa þrWWaÞ þRR>ðWWb þrWWbÞ;

8>><
>>: (14)

whererWWa andrWWb are

rWWa

rWWb

� �
¼ RR> MM>

MM> RR>

� ��1 rRR rMM
rMM rRR

� �>
WWa

WWb

� �
: (15)

Eqn. (15) indicates that the learnable parts rRR and rMM can
be equivalently obtained in the process of optimizing WW .
This suggests no necessity of directly learning RR and MM
from the training data as long as WW is inferred through
some optimization procedure. Hence, deriving RR and MM as
in Eqn. (11) should not degrade the effectiveness of our
whole model, but instead making our entire formulation
design more tractable and more elegant with different com-
ponents fulfilling a specific function.

4.3 Camera View Discrepancy Regularization

As aforementioned in Eqn. (10), our transformations of all
camera views are not independent to each other. Although
these transformations are view-specific, they are mutually
correlated in practice because they quantify the same group of
people for association between camera views. View-specific
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modelling (Eqns. (4) and (12)) allows naturally for regulariz-
ing the mutual relation between different sub-models, poten-
tially incorporating complementary correlation modelling
between camera views in addition to Eqn. (10). To achieve
this, we enforce the constraint on sub-models by introducing
a Camera ViewDiscrepancy regularization as

gcvd ¼ jjWWa �WWbjj2; (16)

Moreover, this CVD constraint can be combined well with
the common ridge regularization as

g ¼ jjWWa �WWbjj2 þ hridgetrðWW>WW Þ
¼ tr

�
WW>

�
II �II
�II II

�
WW

�
þ hridgetrðWW>WW Þ

¼ ð1þ hridgeÞtrðWW>CCWWÞ;
(17)

where

CC ¼ II �bII
�bII II

� �
; b ¼ 1

1þ hridge
:

trð�Þ denotes the trace operation, and hridge > 0 is a tradeoff
parameter for balancing the two terms. The regularization g

can be readily incorporated into existing learning methods
[10], [12], [13], [22], [82] for possibly obtaining better model
generalization. Specifically, we define an enriched objective
function on top of Eqn. (3) as

ŴW ¼ argmin
WW

fobjðWW> ~XXcraftÞ þ �trðWW>CCWWÞ; (18)

where � controls the influence of g. Next, we derive the pro-
cess for solving Eqn. (18).

View Discrepancy Regularized Transformation. Since
b ¼ 1

1þhridge
< 1, the matrix CC is of positive-definite.

Therefore, CC can be factorized into the form of

CC ¼ PPLLPP>; (19)

with LL a diagonal matrix and PPPP> ¼ PP>PP ¼ II. So,

PP>CCPP ¼ LL. By defining

WW ¼ PPLL�1
2HH; (20)

we have

WW>CCWW ¼ HH>HH: (21)

Thus, Eqn. (18) can be transformed equivalently to

ĤH ¼ argmin
HH

fobjðHH>LL�1
2PP> ~XXcraftÞ þ �trðHH>HHÞ: (22)

We define the transformed data matrix from all views

€XXcraft ¼ LL�1
2PP> ~XXcraft ¼ ½€xx1; . . . ; €xxn�; (23)

which we call view discrepancy regularized transformation. So,

Eqn. (22) can be simplified as:

Ĥ̂H ¼ argmin
HH

fobjðHH> €XXcraftÞ þ �trðHH>HHÞ: (24)

Optimization. Typically, the same optimization algorithm
as the adopted view-generic discriminative learning method
can be exploited to solve the optimization problem. For
providing a complete picture, we will present a case study

with a specific discriminative learning method incorporated
into the proposed CRAFT framework.

4.4 CRAFT Instantialization

In our CRAFT framework, we instantilize a concrete person
re-id method using the Marginal Fisher Analysis [22], due
to its several important advantages over the canonical Lin-
ear Discriminant Analysis (LDA) model [82]: (1) no strict
assumption on data distribution and thus more general for
discriminative learning, (2) a much larger number of avail-
able projection directions, and (3) a better capability of char-
acterizing inter-class separability. We call this method
instance as “CRAFT-MFA”. Algorithm 1 presents an over-
view of learning the CRAFT-MFA model.

Algorithm 1. Learning CRAFT-MFA

Input: Training dataXXa andXXb with identity labels;
Output: Augmentation matrices RR and MM, projection matrix

ŴW ;
1 (I) Camera correlation aware feature augmentation
(Section 4.2)

2 - Estimate the camera correlation v (Eqn. (7));
3 - Compute augmentation matrix RR andMM (Eqn. (11));
4 - Transform original featuresXX into ~XXcraft (Eqn. (9));
5 (II) Camera view discrepancy regularization (Section 4.3)
6 - Obtain the camera view discrepancy regularization (Eqn.

(16));
7 - Get the fused regularization; (Eqn. (17));
8 - Decompose CC into PP and LL (Eqn. (19));
9 - Transform ~XXcraft into €XXcraft (Eqn. (23));
10 (III) Optimization
11 - Obtain ĤH with the MFA algorithm (Eqn. (25));
12 - Calculate ~WW with PP , LL, and ĤH (Eqn. (20)).

Specifically, we consider each person identity as an indi-
vidual class. That is, all images of the same person form
the whole same-class samples, regardless of being captured
by either camera. Formally, given the training data XX ¼
½XXa;XXb� ¼ ½xx1; . . . ; xxn� with n ¼ na þ nb, we first transform
them to €XXcraft ¼ ½€xx1; . . . ; €xxn� (Lines 1-9 in Algorithm 1). ĤH
can then be obtained by solving the MFA optimization
problem (Line 11 in Algorithm 1)

min
HH

X
i 6¼j

AAc
ijjjHH>ð€xxi � €xxjÞjj22 þ �trðHH>HHÞ

s.t.
X
i 6¼j

AAp
ijjjHH>ð€xxi � €xxjÞjj22 ¼ 1;

(25)

where the element AAc
ij of the intrinsic graph AAc is

AAc
ij ¼ 1 if i 2 Nþ

k1
ðjÞ or j 2 Nþ

k1
ðiÞ

0 otherwise;

�

withNþ
k1
ðiÞ denoting the set of k1 nearest neighbor indices of

sample xxi in the same class. And the elements AAp
ij of the

penalty graph AAp are defined as

AAp
ij ¼

1 if ði; jÞ 2 Pk2ðyiÞ or ði; jÞ 2 Pk2ðyjÞ
0 otherwise;

�

where yi and yj refer to the class/identity label of the ith
and jth sample, respectively, Pk2ðyiÞ indicates the set of data
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pairs that are k2 nearest pairs among fði; jÞjyi 6¼ yjg. Finally,
we compute the optimal ŴW with Eqn. (20) (Line 12 in Algo-
rithm 1). Note that this process generalizes to other view-
generic discriminative learning algorithms [10], [12], [13],
[82] (see evaluations in Table 4).

4.5 Kernel Extension

The objective function Eqn. (24) assumes linear projection.
However, given complex variations in viewing condition
across cameras, the optimal subspace for person re-id may
not be obtainable by linear models. Thus, we further kernel-
ize our feature augmentation (Eqn. (9)) by projecting the
original feature data into a reproducing kernel Hilbert space
H with an implicit function fð�Þ. The inner-product of two
data points in H can be computed by a kernel function
kðxxi; xxjÞ ¼ fðxxiÞ;fðxxjÞ

	 

. In our evaluation, we utilized the

nonlinear Bhattacharyya kernel function due to (1) its invari-
ance against any non-singular linear augmentation and
translation and (2) its additional consideration of data distri-
bution variance and thus more reliable [83]. We denote kkðxxÞ
as the kernel similarity vector of a sample xx, obtained by

kkðxxÞ ¼ ½kðxx1; xxÞ; kðxx2; xxÞ; . . . ; kðxxn; xxÞ�>; (26)

where xx1; xx2; . . . ; xxn are all samples from all views, and
n ¼ na þ nb is the number of training samples. Then the
mapping function can be expressed as

fkerðxxÞ ¼ UU>fðXXÞ>fðxxÞ ¼ UU>kkðxxÞ; (27)

where UU 2 Rn represents the parameter matrix to be
learned. The superscript for camera id is omitted for sim-
plicity. Conceptually, Eqn. (27) is similar to the linear case
Eqn. (12) if we consider kkðxxÞ as a feature representation of
xx. Hence, by following Eqn. (9), the kernelized version of
our feature augmentation can be represented as

~kkacraftðxxÞ ¼
RR
MM

� �
kkaðxxÞ; ~kkbcraftðxxÞ ¼

MM
RR

� �
kkbðxxÞ; (28)

where RR 2 Rn�n and MM 2 Rn�n are the same as in Eqn. (11)
but with a different dimension, kkaðxxÞ and kkbðxxÞ denote the
sample kernel similarity vectors for camera a and b, respec-
tively. Analogously, both view discrepancy regularization
(Eqn. (17)) and model optimization (Eqn. (24)) can be per-
formed similarly as in the linear case.

4.6 Extension to More Than Two Camera Views

There often exist multiple (more than two) cameras
deployed across a typical surveillance network. Suppose
there are J(> 2) non-overlapping camera views. Therefore,
person re-id across the whole network is realistically criti-
cal, but joint quantification on person association across
multiple camera views is largely under-studied in the cur-
rent literature [84], [85]. Compared to camera pair based re-
id above, this is a more challenging situation due to: (1)
intrinsic difference between distinct camera pairs in view-
ing conditions which makes the general cross-camera fea-
ture mapping more complex and difficult to learn; (2)
quantifying simultaneously the correlations of multiple
camera pairs is non-trivial in both formulation and compu-
tation. In this work, we propose to address this challenge by

jointly learning adaptive view-specific re-id models for all
cameras in a unified fashion.

Specifically, we generalize our camera correlation aware
feature augmentation (Eqn. (9)) into multiple (J) camera
cases as

~xxf
craft ¼ ½MMi;1;MMi;2; . . . ;MMi;i�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

#: i�1

; RRi;

MMi;iþ1;MMi;iþ2; . . . ;MMi;J|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
#: J�i

�>xxf;
(29)

with

MMi;j ¼ vi;j

$i
IId�d; (30)

where vi;j denotes the correlation between camera i and j,
estimated by Eqn. (7). Similar to Eqn. (11), we design

RRi ¼
2� 1

J�1

P
j6¼i vi;j

$i
; (31)

with

$i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 1

J�1

P
j6¼i vi;jÞ2 þ

P
j 6¼i v

2
i;j

q
: (32)

Similarly, we extend the CVD regularization Eqn. (16) to

gcvd ¼
X

i;j2f1;2;...;Jg and i 6¼j

jjWWi �WWjjj2: (33)

Thus, the matrix CC of g (Eqn. (17)) is expanded as

CC ¼
II �b0II �b0II � � � �b0II

�b0II II �b0II � � � �b0II
..
. ..

. ..
. ..

.

�b0II �b0II �b0II � � � II

0
BBB@

1
CCCA; (34)

where b0 ¼ b
J�1. The following view discrepancy regularized

transformation and model optimization can be carried out
in the same way as in Section 4.3. Clearly, re-id between
two cameras is a special case of the extended model when
J ¼ 2. Therefore, our extended CRAFT method allows to
consider and model the intrinsic correlation between cam-
era views in the entire network.

4.7 Person Re-Identification by CRAFT

Once a discriminative model (WW or UU) is learned from the
training data using the proposed method, we can deploy it
for person re-id. Particularly, first, we perform feature aug-
mentation to transform all original features fxxg to the
CRAFT space f~xxcraftg (Eqn. (29)). Second, we match a given
probe person ~xxp

craft from one camera against a set of gallery
people f~xxg

craft;ig from another camera by computing the
Euclidean distance fdistð~xxp

craft; ~xx
g
craft;iÞg in the prediction

space (induced by Eqns. (12) or (27)). Finally, the gallery
people are sorted in ascendant order of their assigned dis-
tances to generate the ranking list. Ideally, the true match
(es) can be found among a few top ranks. The pipeline of
our proposed re-id approach is depicted in Fig. 4.
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5 EXPERIMENTS

5.1 Datasets and Evaluation Settings

Datasets.We extensively evaluated the proposed approach on
five person re-id benchmarks: VIPeR [30], CUHK01 [31],
CUHK03 [26], QMUL GRID [32], and Market-1501 [33]. All
datasets are very challenging due to unknown large cross-
camera divergence in viewing conditions, e.g., illumination,
viewpoint, occlusion and background clutter (Fig. 5). The
VIPeR dataset consists of 1,264 images from 632 persons
observed from two surveillance cameras with various view-
points and background settings. As these images are of low
spatial resolution, it is very difficult to extract reliable appear-
ance features (Fig. 5a). The CUHK01 dataset consists of 971
people observed from two outdoor cameras. Each person has
two samples per camera view. Compared with VIPeR, this
dataset has higher spatial resolution and thus more appear-
ance information are preserved in images (Fig. 5b). The
CUHK03 dataset consists of 13,164 images from 1,360 people
collected from six non-overlapping cameras. In evaluation,
we used the automatically detected person imageswhich rep-
resent a more realistic yet challenging deployment scenario,
e.g., due to more severe misalignment caused by imperfect
detection (Fig. 5c). The QMUL GRID dataset consists of 250
people image pairs from eight different camera views in a
busy underground station.Unlike all the three datasets above,
there are 775 extra identities or imposters. All images of this
dataset are featured with lower spatial resolution and more
drastic illumination variation (Fig. 5d). TheMarket-1501 data-
set contains person images collected in front of a campus
supermarket at Tsinghua University. A total of six cameras
were used, with five high-resolution and one low-resolution.
This dataset consists of 32,668 annotated bounding boxes of
1,501 people (Fig. 5e).

Evaluation Protocol. For all datasets, we followed the stan-
dard evaluation settings for performing a fair comparison
with existing methods as below: (I) On the VIPeR, CUHK01
and QMUL GRID benchmarks, we split randomly the whole
people into two halves: one for training and one for testing.
The cumulative matching characteristic (CMC) curve was uti-
lized to measure the performance of the compared methods.
As CUHK01 is a multi-shot (e.g., multiple images per person
per camera view) dataset, we computed the final matching
distance between two people by averaging corresponding
cross-view image pairs. We repeated the experiments for
10 trials and reported the average results. (II) OnCUHK03, we
followed the standard protocol [26]—repeating 20 times of
random 1,260/100 people splits for model training/test and
comparing the averaged matching results. (III) On Market-
1501, we utilized the standard training (750) and testing (751)
people split provided by the authors of [33]. Apart from
CMC,we also used other two performancemetrics: (1) Rank-1

accuracy, and (2) mean Average Precision (mAP), i.e., first
computing the area under the Precision-Recall curve for each
probe, then calculating the mean of Average Precision over
all probes.

5.2 Evaluating Our Proposed Re-Id Approach

We evaluated and analyzed the proposed person re-id
approach in these aspects: (1) Effect of our CRAFT frame-
work (Eqns. (9) and (11)); (2) Comparison between CRAFT
and domain adaptation; (3) Effect of our CVD regularization
gcvd (Eqn. (16)); (4) Generality of CRAFT instantialization;
(5) Effect of our HIPHOP feature; (6) Complementary of
HIPHOP on existing popular features.

Effect of Our CRAFT Framework. We evaluated the pro-
posed CRAFT method by comparing with (a) baseline feature
augmentation (BaseFeatAug) [69], (b) zero padding (ZeroPad)
[71], and (c) original features (OriFeat). Their kernelized ver-
sions using the Bhattacharyya kernel function were also
evaluated. For fair comparison, our CRAFT-MFA method is
utilized for re-id model learning in all compared methods.

Table 1 shows the re-id results. It is evident that our
CRAFT approach outperformed consistently each baseline
method on all the four re-id datasets, either using kernel or
not. For example, CRAFT surpasses OriFeat, ZeroPad and
BaseFeatAug by 4:5%=5:7%=15:1%=2:5%=4:4%, 10:3%=3:6%
=2:5%=29:7%=18:2%, 2:3%=11:0%=0:2%=2:6% =5:3% at rank-1
on VIPeR/CUHK01/CUHK03/Market-1501/QMUL GRID,
respectively. Similar improvements were observed in the
kernelized case. It is also found that, without feature aug-
mentation, OriFeat produced reasonably good person
matching accuracies, whilst both ZeroPad and BaseFeatAug
may deteriorate the re-id performance. This plausible rea-
sons are: (1) The small training data size may lead to some
degree of model overfitting given two or three times asmany
parameters as OriFeat; and (2) Ignoring camera correlation
can result in sub-optimal discrimination models. The re-id
performance can be further boosted using the kernel trick in
most cases except QMUL GRID. This exception may be due
to the per-camera image imbalance problem on this dataset,
e.g., 25 images from the 6th camera versus 513 images from
the 5th camera. In the following, we used the kernel version
of all methods unless otherwise stated.

Fig. 4. Pipeline of the proposed person re-id approach. Training state is indicated with orange arrows, and testing stage with blue arrows.

Fig. 5. Example images from different person re-id datasets. For every
dataset, two images in a column correspond to the same person.
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Comparison Between CRAFT and Domain Adaptation. We
compared our CRAFT with two representative domain
adaptation models: TCA [63] and TFLDA [64]. It is evident
from Table 3 that the proposed CRAFT always surpasses
TCA and TFLDA with a clear margin in the re-id perfor-
mance on all datasets. This is because: (1) TCA is not
discriminant and thus yielded much poor accuracies; and
(2) both TCA and TFLDA assume that the target domain
shares the same class labels as the source domain, which
however is not valid in re-id applications. This suggests
the advantage and superiority of our cross-view adaptive
modelling over conventional domain adaptation applied to
person re-id.

Effect of Our CVD Regularization. For evaluating the exact
impact of the proposed regularization gcvd (Eqns. (16) and
(33)) on model generalization, we compared the re-id per-
formance of our full model with a stripped down variant
without gcvd during model optimization, called “CRAFT(no
gcvd)”. The results in Table 2 demonstrate the usefulness of
incorporating gcvd for re-id. This justifies the effectiveness of
our CVD regularization in controlling the correlation degree
between view-specific sub-models.

Generality of CRAFT Instantialization. We evaluated the
generality of CRAFT instantialization by integrating differ-
ent supervised learning models. Five popular state-of-the-
art methods were considered: (1) MFA [22], (2) LDA [82],
(3) KISSME [13], (4) LFDA [10], (5) XQDA [12]. Our kernel
feature was adopted.

The results are given in Table 4. It is evident that our
CRAFT framework is general for incorporating different
existing distance metric learning algorithms. Specifically,
we find that CRAFT achieved better re-id results than other
feature augmentation competitors with any of these learn-
ing algorithms. The observation also suggests the consistent
superiority and large flexibility of the proposed approach
over alternatives in learning discriminative re-id models.
We utilize CRAFT-MFA for the following comparisons with
existing popular person re-id methods.

Effect of Our HIPHOP Feature. We compared the pro-
posed HIPHOP feature with several extensively adopted
re-id representations: (1) ELF18 [19], (2) ColorLBP [54], (3)
WHOS [46], and (4) LOMO [12]. The Bhattacharyya kernel
was utilized for all compared visual features.

The re-id results are reported in Table 5. It is evident that
our HIPHOP feature is overall much more effective than the
compared alternatives for person re-id. For example, using
HIPHOP improved the rank-1 rate from 42.3 percent by
LOMO to 50.3 percent on VIPeR, from 66.0 percent byWHOS
to 74.5 percent on CUHK01, from 77.9 percent by LOMO to
84.3 percent on CUHK03, and from 52.2 percent byWHOS to
68.7 percent on Market-1501. This suggests the great advan-
tage and effectiveness of more view invariant appearance
representation learned from diverse albeit generic auxiliary
data. A few reasons are: (1) By exploiting more complete and
diverse filters (Fig. 6b) than ELF18 (Fig. 6a), more view change
tolerant person appearance details shall be well encoded for

TABLE 1
Comparing Top Matching Ranks (%) on VIPeR and CUHK01

Dataset VIPeR [30] CUHK01 [31] CUHK03 [26] Market-1501 [33] QMUL GRID [32]

Rank (%) 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

OriFeat 43.3 72.7 84.1 93.4 64.3 85.1 90.6 94.6 63.4 88.0 93.0 96.1 65.4 84.0 89.3 93.1 21.0 42.9 53.0 62.7
+ Kernelization 47.0 75.4 86.8 94.4 69.5 89.3 93.5 96.5 78.6 94.9 96.8 98.4 66.0 84.4 89.3 93.2 19.0 42.2 51.9 61.4
ZeroPad[71] 37.5 69.9 82.8 92.1 66.4 85.8 90.5 94.7 76.0 91.9 94.8 95.3 38.2 62.5 71.7 80.0 7.2 26.0 40.3 55.8
+ Kernelization 40.0 72.8 85.0 93.4 71.8 89.6 93.8 96.5 80.0 92.7 94.4 95.3 49.5 72.4 80.0 85.8 6.1 21.8 36.3 51.4
BaseFeatAug[69] 45.5 76.1 87.4 95.1 59.0 81.1 87.0 92.4 78.3 94.6 97.3 98.9 65.3 83.6 88.8 92.6 20.1 47.6 58.8 70.0
+ Kernelization 47.3 77.8 89.0 95.2 63.0 83.5 89.0 93.6 83.4 97.0 98.1 99.1 65.3 83.6 88.8 92.6 20.1 47.6 58.8 70.0
CRAFT 47.8 77.1 87.8 95.1 70.0 87.4 92.0 95.5 78.5 94.7 97.5 98.9 67.9 85.1 90.0 93.4 25.4 50.2 61.8 74.2
+ Kernelization 50.3 80.0 89.6 95.5 74.5 91.2 94.8 97.1 84.3 97.1 98.3 99.1 68.7 87.1 90.8 94.0 22.4 49.9 61.8 71.7

The 1st and 2nd best results are indicated in red and blue color respectively.

TABLE 3
Comparison Between CRAFT and Domain Adaptation

Dataset VIPeR [30] CUHK01 [31] CUHK03 [26] Market-1501 [33] QMUL GRID [32]

Rank (%) 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

TCA [63] 11.1 23.4 31.0 38.5 7.0 16.4 22.2 30.1 5.5 16.2 26.4 42.8 8.9 18.7 24.1 30.1 9.8 22.2 29.8 38.3
TFLDA [64] 46.4 75.8 86.7 93.9 69.6 88.7 92.8 96.2 76.7 94.4 96.5 98.0 62.5 81.3 87.0 91.6 19.5 42.5 51.6 61.8
CRAFT 50.3 80.0 89.6 95.5 74.5 91.2 94.8 97.1 84.3 97.1 98.3 99.1 68.7 87.1 90.8 94.0 22.4 49.9 61.8 71.7

TABLE 2
Evaluating the Effect of Our CVD Regularization

Dataset VIPeR [30] CUHK01 [31] CUHK03 [26] Market-1501 [33] QMUL GRID [32]

Rank (%) 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

CRAFT(no gcvd) 46.3 77.9 88.1 95.4 73.8 90.6 94.2 96.9 83.9 97.0 98.2 99.1 66.6 85.9 90.7 93.7 15.8 45.0 57.7 60.0
CRAFT 50.3 80.0 89.6 95.5 74.5 91.2 94.8 97.1 84.3 97.1 98.3 99.1 68.7 87.1 90.8 94.0 22.4 49.9 61.8 71.7
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discriminating between visually alike people; (2) By selecting
salient patterns, our HOP descriptor possesses some features
more tolerant to view variety, which is critical to person re-id
due to the potential cross-view pose and viewing condition
variation. This is clearly illustrated in Figs. 6c and 6d: (i)
Cross-view images of the same person have similar HOP pat-
terns; (ii) Visually similar people (P-2, P-3) share more com-
monness than visually distinct people (P-1, P-2) in HOP
histogram. Besides, we evaluated the discrimination power
of features from different conv layers in Table 5. More

specifically, it is shown in Table 5 that the 1st/2nd conv layer
based features (i.e., HIP/HOP, being low-level) are shown
more effective than those from the 6th/7th conv layer (i.e.,
fc6/fc7, being abstract). This confirms early findings [24], [73]
that higher layers are more task-specific, thus less generic to
distinct tasks.

Recall that the ordinal feature HOP (Eqn. (1)) is com-
puted based on top-k activations of the feature maps. We
further examined the effect of k on the feature quality on the
VIPeR dataset. For obtaining a detailed analysis, we tested

TABLE 5
Evaluating the Effectiveness of Our HIPHOP Feature

Dataset VIPeR [30] CUHK01 [31] CUHK03 [26] Market-1501 [33] QMUL GRID [32]

Rank (%) 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

ELF18[19] 38.6 69.2 82.1 91.4 51.8 75.9 83.1 88.9 65.8 89.9 93.8 97.0 46.4 70.0 78.3 84.9 19.1 41.8 55.1 67.0
ColorLBP[54] 16.1 36.8 49.4 64.9 32.3 53.1 62.9 73.0 29.8 57.3 70.6 82.9 13.6 28.2 36.2 45.9 5.8 15.0 22.8 32.2
WHOS [46] 37.1 67.7 79.7 89.1 66.0 85.5 91.0 95.1 72.0 92.9 96.4 98.4 52.2 76.0 83.3 89.6 20.7 47.4 58.8 69.8
LOMO[12] 42.3 74.7 86.5 94.2 65.4 85.3 90.5 94.1 77.9 95.5 97.9 98.9 47.2 72.9 81.7 88.2 21.4 43.0 53.1 65.5

HIPHOP 50.3 80.0 89.6 95.5 74.5 91.2 94.8 97.1 84.3 97.1 98.3 99.1 68.7 87.1 90.8 94.0 22.4 49.9 61.8 71.7
HOP only 47.6 75.6 86.6 93.8 68.9 87.7 92.7 96.3 76.4 89.5 93.6 97.3 57.9 78.7 85.6 90.5 18.0 48.2 59.9 70.2
HIP only 47.8 76.4 86.4 94.3 70.0 88.0 92.2 95.5 79.5 92.3 96.2 97.4 67.5 85.0 89.7 92.9 21.6 46.2 59.4 71.0
fc6 only 15.0 36.6 50.9 66.0 19.6 42.1 54.0 66.3 21.2 43.3 56.1 67.2 13.5 31.3 42.3 54.1 9.6 21.1 29.3 40.2
fc7 only 10.0 27.3 39.3 55.1 11.7 27.3 37.0 48.6 12.7 27.9 36.2 48.4 9.2 24.2 34.1 45.3 5.1 14.5 20.6 32.4

HIPHOP+ELF18 52.5 81.9 91.3 96.5 75.6 91.6 95.1 97.1 86.5 97.4 98.6 99.4 69.9 86.9 90.9 94.4 23.1 50.7 60.9 72.4
HIPHOP+ColorLBP 51.0 80.3 90.2 95.7 74.3 90.8 94.4 96.9 84.0 97.0 98.6 99.5 69.3 86.9 91.4 94.1 22.9 48.4 59.2 70.0
HIPHOP+WHOS 52.5 81.0 90.5 96.2 75.9 92.1 95.2 97.3 85.0 97.4 98.7 99.5 70.3 88.1 91.7 94.6 24.5 53.3 64.4 75.0
HIPHOP+LOMO 54.2 82.4 91.5 96.9 78.8 92.6 95.3 97.8 87.5 97.4 98.7 99.5 72.3 88.2 91.9 95.0 26.0 50.6 62.5 73.3

Best results (%) by single and fused features are indicated in blue and red color respectively. Our CRAFT-MFA is utilized for each type of feature in this
experiment.

TABLE 4
Evaluating the Generality of CRAFT Instantialization

Method CRAFT OriFeat ZeroPad[71] BaseFeatAug[69]

Rank (%) 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

VIPeR

MFA [22] 50.3 80.0 89.6 95.5 47.0 75.4 86.8 94.4 40.0 72.8 85.0 93.4 47.3 77.8 89.0 95.2
LDA [82] 49.3 79.1 89.2 95.3 46.4 75.0 86.5 94.1 40.0 73.8 84.7 93.3 47.4 78.0 88.9 95.3
KISSME [13] 50.1 79.1 88.9 95.0 46.3 75.1 86.5 94.0 38.7 71.1 83.8 92.3 48.4 77.6 88.7 94.9
LFDA [10] 49.3 79.1 89.2 95.3 46.4 75.0 86.5 94.1 40.0 73.8 84.7 93.3 47.4 77.7 88.8 95.2
XQDA [12] 50.3 79.1 88.9 95.0 46.3 75.1 86.5 94.0 38.7 71.1 83.8 92.3 47.1 76.9 88.9 94.7

CUHK01

MFA [22] 74.5 91.2 94.8 97.1 69.5 89.3 93.5 96.5 71.8 89.6 93.8 96.5 63.0 83.5 89.0 93.6
LDA [82] 73.8 90.3 93.9 96.6 69.4 88.3 92.8 96.1 71.3 88.8 92.9 96.1 63.0 83.5 88.9 93.4
KISSME [13] 73.0 89.6 93.6 96.3 69.2 87.6 92.5 95.8 67.3 85.9 90.8 94.7 63.6 83.0 88.0 92.9
LFDA [10] 73.8 90.3 93.9 96.6 69.4 88.3 92.8 96.1 71.3 88.8 92.9 96.1 62.6 83.1 88.5 93.3
XQDA [12] 73.0 89.5 93.6 96.3 69.1 87.6 92.6 95.8 69.9 87.3 92.1 95.5 61.3 82.2 87.8 93.1

CUHK03

MFA [22] 84.3 97.0 98.3 99.1 78.6 94.9 96.8 98.3 80.0 92.7 94.4 95.3 83.4 97.0 98.1 99.1
LDA [82] 80.2 96.6 98.2 99.0 76.6 94.6 96.6 98.0 79.5 94.7 96.4 98.3 80.0 96.2 97.3 99.0
KISSME [13] 76.2 93.7 96.9 98.5 64.7 88.7 93.4 96.2 73.6 92.5 95.9 98.0 72.4 91.6 95.3 97.8
LFDA [10] 80.9 96.4 98.3 99.0 76.3 93.5 96.3 97.8 79.7 95.6 97.4 98.0 80.4 96.3 98.2 98.9
XQDA [12] 79.8 96.0 98.0 99.0 78.7 94.3 97.4 98.7 78.3 95.8 97.4 98.2 79.2 95.5 97.3 98.1

GRID

MFA [22] 22.4 49.9 61.8 71.7 19.0 42.2 51.9 61.4 6.1 21.8 36.3 51.4 17.0 45.8 58.2 67.9
LDA [82] 22.1 50.1 61.6 71.0 19.0 42.2 51.7 61.7 6.6 23.4 37.3 50.7 17.4 46.6 57.6 68.3
KISSME [13] 22.4 50.4 61.4 71.5 19.5 41.8 51.6 61.0 5.5 21.4 35.8 50.8 17.0 46.5 57.4 67.5
LFDA [10] 22.2 50.1 61.5 71.0 19.0 42.0 51.6 61.7 6.6 23.4 37.3 50.7 17.4 46.6 57.6 68.3
XQDA [12] 22.3 50.9 61.6 71.4 19.8 42.5 51.7 61.8 6.1 22.7 36.5 51.4 17.0 46.5 57.4 67.8

Market

MFA [22] 68.7 87.1 90.8 94.0 66.0 84.4 89.3 93.2 49.5 72.4 80.0 85.8 65.5 84.5 90.5 93.4
LDA [82] 62.9 82.2 88.6 92.4 62.6 81.9 87.6 92.2 47.9 72.9 81.9 87.8 60.8 81.8 87.3 91.8
KISSME [13] 61.4 82.4 88.5 92.6 58.7 78.7 85.3 90.1 51.2 76.3 84.3 89.5 51.2 75.7 83.6 89.7
LFDA [10] 68.0 85.5 90.9 94.5 61.7 79.5 85.7 90.6 47.7 72.4 80.9 87.9 65.4 83.6 89.5 93.3
XQDA [12] 61.3 81.9 87.6 92.1 55.5 76.6 84.1 89.3 51.0 77.1 84.3 89.4 44.2 71.1 81.4 88.1

In each row, the 1st/2nd best results (%) for each rank are indicated in red / blue color.
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the HOP feature extracted from the 1st/2nd conv layer and
both layers, separately. Fig. 7 shows the impact of setting
different k values ranging from 5 to 50 in terms of rank-1
recognition rate. The observations suggest clearly that k is
rather insensitive with a wide satisfiable range. We set
k ¼ 20 in all other evaluations.

Complementary of HIPHOP on Existing Re-Id Features. Con-
sidering the different design nature of our person represen-
tation as compared to previous re-id features, we evaluated
the complementary effect of our HIPHOP with ELF18,
ColorLBP, WHOS and LOMO (see the last four rows in
Table 5). It is found that: (1) After combining our HIPHOP,
all these existing features can produce much better re-id
performance. This validates the favourable complementary
role of our HIPHOP feature for existing ones. (2) Interest-
ingly, these four fusions produce rather similar and compet-
itive re-id performance, as opposite to the large differences
in the results by each individual existing feature (see the
first four rows in Table 5). This justifies the general comple-
mentary importance of the proposed feature for different
existing re-id features. Next, we utilize “HIPHOP+LOMO”
as the default multi-type feature fusion in the proposed
CRAFT-MFA method due to its slight superiority over other
combinations. This is termed as CRAFT-MFA(+LOMO) in
the remaining evaluations.

5.3 Comparing State-of-the-Art Re-Id Methods

We compared extensively our method CRAFT-MFA with
state-of-the-art person re-id approaches. In this evaluation,
we considered two scenarios: (1) Person re-id between two
cameras; (2) Person re-id across multiple (> 2) cameras.
Finally, we compared the person re-id performance by dif-
ferent methods using multiple feature types. We utilized
the best results reported in the corresponding papers for
fair comparison across all compared models.

(I) Person Re-Id Between Two Cameras. This evaluation was
carried out on VIPeR [30] and CUHK01 [31] datasets, each
with a pair of camera views. We compared our CRAFT-
MFA with both metric learning and recent deep learning
based methods.

Comparisons on VIPeR—We compared with 26 state-of-
the-art re-id methods on VIPeR. The performance compari-
son is reported in Table 6. It is evident that our CRAFT-
MFA method surpassed all competitors over top ranks
clearly. For instance, the rank-1 rate is improved notably
from 47.8 percent (by the 2nd best method TCP [60]) to 50.3

percent. This shows the advantages and effectiveness of our
approach in a broad context.

Comparisons on CUHK01—We further conducted the com-
parative evaluation on the CUHK01 dataset with the results
shown in Table 7. It is evident that our CRAFT-MFA method
generated the highest person re-id accuracies among all the
compared methods. Specifically, the best alternative (DGD)
was outperformed notably by our method with a margin of
7:9%ð¼ 74:5%� 66:6%Þ rank-1 rate. Relative to VIPeR,
CRAFT-MFA obtained more performance increase on
CUHK01, e.g., improving rank-1 rate by 2:5%ð¼ 50:3% �
47:8%Þ on VIPeR versus 7.9 percent on CUHK01. This is as

Fig. 6. Illustration of our HIP and HOP person descriptors. (a) Gabor filters
used in ELF18 [19]. (b) Convolutional filters from the 1st AlexNet layer. (c)
Horizontal stripes of six images from three different people (P-1, P-2 and
P-3). (d) HOP histograms extracted from the corresponding image strips
(i.e., indicated with a rectangular of the same color as histogram bars) in
(c). Partial HOPdescriptors are shown for clear visualization.

Fig. 7. Evaluating the effect of k in the HOP descriptor.

TABLE 6
Comparing State-of-the-Art Methods on VIPeR [30]

Rank (%) 1 5 10 20

RDC [8] 15.7 38.4 53.9 70.1
KISSME [13] 22.0 - 68.0 -
LFDA [10] 24.2 52.0 67.1 82.0
RPLM [54] 27.0 - 69.0 83.0
MtMCML [85] 28.8 59.3 75.8 88.5
LADF [9] 29.3 61.0 76.0 88.1
SalMatch [86] 30.2 52.3 65.5 79.2
MFA [11] 32.2 66.0 79.7 90.6
kLFDA [11] 32.3 65.8 79.7 90.9
Ref-reid [17] 33.3 - 78.4 88.5
SCNCD [3] 33.7 62.7 74.8 85.0
Siamese-Net [56] 34.4 62.2 75.9 87.2
CIND-Net [27] 34.8 63.6 75.6 84.5
CorStruct [87] 34.8 68.7 82.3 91.8
PolyMap [88] 36.8 70.4 83.7 91.7
KCCA [18] 37.0 - 85.0 93.0
DGD [29] 38.6 - - -
XQDA [12] 40.0 68.1 80.5 91.1
MLAPG [15] 40.7 69.9 82.3 92.4
RDC-Net [74] 40.5 60.8 70.4 84.4
DNS [39] 42.3 71.5 82.9 92.1
KEPLER [89] 42.4 - 82.4 90.7
LSSCDL [90] 42.7 - 84.3 91.9
CVDCA [19] 43.3 72.7 83.5 92.2
Metric Ensemble [14] 45.9 77.5 88.9 95.8
TCP [60] 47.8 74.7 84.8 89.2

CRAFT-MFA 50.3 80.0 89.6 95.5
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expected, because person images from VIPeR are much more
challenging for re-id due to poorer imaging quality, more
complex illumination patterns, and more severe background
clutter (see Figs. 5a and 5b). This also validates the generality
and capability of the proposedmethod in copingwith various
degrees of person re-id challenges when learning view-
specific and view-generic discriminative re-id information.

(II) Person Re-Id Across More Than Two Cameras. Real-
world person re-id applications often involve a surveillance
network with many cameras. It is therefore critical to evaluate
the performance of associating people across a whole camera
network, although the joint learning and quantification is
largely under-studied in the current literature. In this multi-
camera setting, we exploit the generalized CRAFT model
(Eqn. (29)) to learn an adaptive sub-model for each camera
view in a principled fashion. This evaluation was performed
on three multi-camera re-id datasets: CUHK03 [26] (with six
cameras in a university campus), QMUL GRID [32] (with
eight cameras in an underground station), and Market-1501
[33] (with six cameras near a university supermarket).

Comparisons on CUHK03—We evaluated our approach by
comparing the state-of-the-arts on CUHK03 [26]. This evalu-
ation was conducted using detected images. It is shown in
Table 8 that our method significantly outperformed all com-
petitors, e.g., the top-2 Gated-SCNN/DGD by 16.2 percent/
9.0 percent at rank-1, respectively.

Comparisons on QMUL GRID—The re-id results of differ-
ent methods on QMUL GRID are presented in Table 9. It is
found that the proposed CRAFT-MFA method produced
the most accurate results among all competitors, similar to
the observation on CUHK03 above. In particular, our
CRAFT-MFA method outperformed clearly the 2nd best
model LSSCDL, e.g., with similar top-1 matching rate but
boosting rank-10 matching from 51.3 to 61.8 percent. This
justifies the superiority of our CRAFT model and person
appearance feature in a more challenging realistic scenario.

Comparisons on Market-1501—We compared the perfor-
mance on Market-1501 with these methods: Bag-of-Words
(BoW) based baselines [33], a Discriminative Null Space
(DNS) learning based model [39], and four metric learning
methods KISSME [13], MFA [22], kLFDA [66], XQDA [12],
S-LSTM [62], Gated-SCNN [61]. We evaluated both the
single-query and multi-query (using multiple probe/query
images per person during the deployment stage) settings. It
is evident from Table 10 that our CRAFT-MFA method out-
performed all competitors under both single-query and
multi-query settings. By addressing the small sample size
problem, the DNS model achieves more discriminative
models than other metric learning algorithms. However, all

TABLE 7
Comparing State-of-the-Art Methods on CUHK01 [31]

Rank (%) 1 5 10 20

LMNN [5] 13.4 31.3 42.3 54.1
ITML [7] 16.0 35.2 45.6 59.8
eSDC [45] 19.7 32.7 40.3 50.6
GM [31] 20.0 - 56.0 69.3
SalMatch [86] 28.5 45.9 55.7 68.0
Ref-reid [17] 31.1 - 68.6 79.2
MLF [2] 34.3 55.1 65.0 74.9
CIND-Net [27] 47.5 71.6 80.3 87.5
CVDCA [19] 47.8 74.2 83.4 89.9
Metric Ensemble [14] 53.4 76.4 84.4 90.5
TCP [60] 53.7 84.3 91.0 96.3
XQDA [12] 63.2 83.9 90.0 94.9
MLAPG [15] 64.2 85.5 90.8 94.9
DNS [39] 65.0 85.0 89.9 94.4
DGD [29] 66.6 - - -

CRAFT-MFA 74.5 91.2 94.8 97.1

TABLE 8
Comparing State-of-the-Art Methods on CUHK03 [26]

Rank (%) 1 5 10 20 mAP (%)

SDALF [44] 4.9 21.0 31.7 - -
ITML [7] 5.1 17.7 2.8.3 - -
LMNN [5] 6.3 18.7 29.0 - -
eSDC [45] 7.7 22.0 33.0 - -
KISSME [13] 11.7 33.3 48.0 - -
FPNN [26] 19.9 50.0 64.0 78.5 -
BoW [33] 23.0 42.4 52.4 64.2 22.7
CIND-Net [27] 45.0 76.0 83.5 93.2 -
XQDA [12] 46.3 78.9 88.6 94.3 -
LSSCDL [90] 51.2 80.8 89.6 - -
MLAPG [15] 51.2 83.6 92.1 96.9 -
SI-CI [59] 52.2 84.9 92.4 96.7 -
DNS [39] 53.7 83.1 93.0 94.8 -
S-LSTM [62] 57.3 80.1 88.3 - 46.3
Gated-SCNN [61] 68.1 88.1 94.6 - 58.8
DGD [29] 75.3 - - - -

CRAFT-MFA 84.3 97.1 98.3 99.1 72.41

TABLE 9
Comparing State-of-the-Art Methods on QMUL GRID [32]

Rank (%) 1 5 10 20

PRDC [8] 9.7 22.0 33.0 44.3
LCRML [91] 10.7 25.8 35.0 46.5
MRank-PRDC [92] 11.1 26.1 35.8 46.6
MRank-RSVM [92] 12.2 27.8 36.3 46.6
MtMCML [85] 14.1 34.6 45.8 59.8
PolyMap [88] 16.3 35.8 46.0 57.6
MLAPG [15] 16.6 33.1 41.2 53.0
KEPLER [89] 18.4 39.1 50.2 61.4
XQDA [12] 19.0 42.2 52.6 62.2
LSSCDL [90] 22.4 - 51.3 61.2

CRAFT-MFA 22.4 49.9 61.8 71.7

TABLE 10
Comparing State-of-the-Art Methods onMarket-1501 [33]

Query/person Single Query Multiple Query

Metric rank-1 (%) mAP (%) rank-1 (%) mAP (%)

BoW [33] 34.4 14.1 42.6 19.5
KISSMEþ [13] 40.5 19.0 - -
MFAþ [22] 45.7 18.2 - -
kLFDAþ [66] 51.4 24.4 52.7 27.4
XQDAþ [12] 43.8 22.2 54.1 28.4
DNS [39] 55.4 29.9 68.0 41.9
S-LSTM [62] - - 61.6 35.3
Gated-SCNN [61] 65.9 39.6 76.0 48.5

CRAFT-MFA 68.7 42.3 77.0 50.3

(þ): the results reported in [39] were utilized.
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these methods focus on learning view-generic discrimina-
tive information whilst overlooking largely useful view-
specific knowledge. Our CRAFT-MFA method effectively
overcome this limitation by encoding camera correlation
into an extended feature space for jointly learning both
view-generic and view-specific discriminative information.
Additionally, our method benefits from more view change
tolerant appearance patterns deeply learned from general
auxiliary data source for obtaining more effective person
description, and surpassed recent deep methods Gated-
SCNN and S-LSTM. All these evidences validate consis-
tently the effectiveness and capability of the proposed per-
son visual features and cross-view re-id model learning
approach in multiple application scenarios.

(III) Person Re-Id with Multiple Feature Representations.
Typically, person re-id can benefit from using multiple dif-
ferent types of appearance features owing to their comple-
mentary effect (see Table 5). Here, we compared our

CRAFT-MFA(+LOMO) method with competitive re-id
models using multiple features. This comparison is given in
Table 11. It is found that our CRAFT-MFA(+LOMO)
method notably outperformed all compared methods utiliz-
ing two or more types of appearance features, particularly
on CUHK01, CUHK03, and Market-1501. Along with the
extensive comparison with single feature based methods
above, these observations further validate the superiority
and effectiveness of our proposed method under varying
feature representation cases.

5.4 Discussion

Here, we discuss the performance of HIPHOP in case that
deep model fine-tuning on the available labelled target data
is performed in prior to feature extraction. Our experimen-
tal results suggest that this network adaptation can only
bring marginal re-id accuracy gain on our HIPHOP feature,
e.g., < 1 percent rank-1 increase for all datasets except Mar-
ket-1501 (1.4 percent), although the improvement on using
fc6 and fc7 feature maps (which are much inferior to HIP-
HOP either fine-tuned or not, see the supplementary file for
more details, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2017.2666805) is clearer. This validates
empirically our argument that lower layer conv filters can
be largely task/domain generic and expressive, thus con-
firming the similar earlier finding [25] particularly in person
re-id context. This outcome is reasonable considering that
the amount of training person images could be still insuffi-
cient (e.g., 632 on VIPeR, 1,940 on CUHK01, 12,197 on
CUHK03, 250 on QMUL GRID, 12,936 on Market-1501) for
producing clear benefit, especially for lower conv layers
which tend to be less target task specific [25]. Critically,
model fine-tuning not only introduces the cost of extra net-
work building complexity but also unfavourably renders our
feature extraction method domain-specific—relying on a
sufficiently large set of labelled training data in the target
domain. Consequently, we remain our domain-generic (i.e.,
independent of target labelled training data and deployable
universally) re-id feature extraction method as our main
person image representation generation way.

6 CONCLUSION

We have presented a new framework called CRAFT for per-
son re-identification. CRAFT is formed based on the camera
correlation aware feature augmentation. It is capable of
jointly learning both view-generic and view-specific dis-
criminative information for person re-id in a principled
manner. Specifically, by creating automatically a camera
correlation aware feature space, view-generic learning algo-
rithms are allowed to induce view-specific sub-models
which simultaneously take into account the shared view-
generic discriminative information so that more reliable
re-id models can be produced. The correlation between per-
camera sub-models can be further constrained by our cam-
era view discrepancy regularization. Beyond the common
person re-id between two cameras, we further extend our
CRAFT framework to cope with re-id jointly across a whole
network of more than two cameras. In addition, we develop
a general feature extraction method allowing to construct

TABLE 11
Comparing State-of-the-Art Methods Using Multiple
Types of Appearance Feature Representations

Dataset VIPeR [30]

Rank (%) 1 5 10 20
Late Fusion [93] 30.2 51.6 62.4 73.8
MLF+LADF [2] 43.4 73.0 84.9 93.7
Metric Ensemble [14] 45.9 77.5 88.9 95.8
CVDCA (fusion) [19] 47.8 76.3 86.3 94.0
FFN-Net (fusion) [57] 51.1 81.0 91.4 96.9

DNS (fusion) [39] 51.2 82.1 90.5 95.9
SCSP [40] 53.5 82.6 91.5 96.7
GOG (fusion) [55] 49.7 - 88.7 94.5
CRAFT-MFA 50.3 80.0 89.6 95.5
CRAFT-MFA(+LOMO) 54.2 82.4 91.5 96.9

Dataset CUHK01 [31]

Rank (%) 1 5 10 20
Metric Ensemble [14] 53.4 76.4 84.4 90.5
FFN-Net (fusion) [57] 55.5 78.4 83.7 92.6
GOG (fusion) [55] 67.3 86.9 91.8 95.9
DNS (fusion) [39] 69.1 86.9 91.8 95.4
CRAFT-MFA 74.5 91.2 94.8 97.1
CRAFT-MFA(+LOMO) 78.8 92.6 95.3 97.8

Dataset CUHK03 [26]

Rank (%) 1 5 10 20
DNS (fusion) [39] 54.7 84.8 94.8 95.2
GOG (fusion) [55] 65.5 88.4 93.7 -
CRAFT-MFA 84.3 97.1 98.3 99.1
CRAFT-MFA(+LOMO) 87.5 97.4 98.7 99.5

Dataset QMUL GRID [32]

Rank (%) 1 5 10 20
SCSP [40] 24.2 44.6 54.1 65.2
GOG (fusion) [55] 24.7 47.0 58.4 69.0
CRAFT-MFA 22.4 49.9 61.8 71.7
CRAFT-MFA(+LOMO) 26.0 50.6 62.5 73.3
Dataset Market-1501 [33]

Query/person Single Query Multiple Query

Metric rank-1 (%) mAP (%) rank-1 (%) mAP (%)

BoW(+HS) [33] - - 47.3 21.9
DNS (fusion) [39] 61.0 35.7 71.6 46.0
SCSP [40] 51.9 26.4 - -
CRAFT-MFA 68.7 42.3 77.0 50.3
CRAFT-MFA(+LOMO) 71.8 45.5 79.7 54.3
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person appearance representations with desired view-
invariance property by uniquely exploiting less relevant
auxiliary object images other than the target re-id training
data. That is, our feature extraction method is universally
scalable and deployable regardless of the accessibility of
labelled target training data. Extensive comparisons against
a wide range of state-of-the-art methods have validated the
superiority and advantages of our proposed approach
under both camera pair and camera network based re-id
scenarios on five challenging person re-id benchmarks.
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