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Homomorphic Interpolation Network for
Unpaired Image-to-image Translation

Ying-Cong Chen, Jiaya Jia, Fellow, IEEE

Abstract—Generative adversarial networks have achieved great success in unpaired image-to-image translation. Cycle consistency, a
key component for this task, allows modeling the relationship between two distinct domains without paired data. In this paper, we
propose an alternative framework, as an extension of latent space interpolation, to consider the intermediate region between two
domains during translation. It is based on the assumption that in a flat and smooth latent space, there exist many paths that connect
two sample points. Properly selecting paths makes it possible to change only certain image attributes, which is useful for generating
intermediate images between the two domains. With this idea, our framework includes an encoder, an interpolator and a decoder. The
encoder maps natural images to a convex and smooth latent space where interpolation is applicable. The interpolator controls the
interpolation path so that desired intermediate samples can be obtained. Finally, the decoder inverts interpolated features back to pixel
space. We also show that by choosing different reference images and interpolation paths, this framework can be applied to
multi-domain and multi-modal translation. Extensive experiments manifest that our framework achieves superior results and is flexible
for various tasks.

F

1 INTRODUCTION

Unpaired image-to-image translation and latent space
interpolation were developed separately and serve different
applications. Unpaired image-to-image translation [1], [2],
[3], [4], [5], [6] aims to map images from one domain
to another, e.g., translating a collection of neutral faces
to smiling ones. Since no pair information is available,
connection of different domains is usually built upon the
cycle-consistency constraint [1], which largely promotes the
capacity of generative models and leads to many impressive
results.

When the purpose is to generate a sequence of images
between the input two domains, intermediate states should
be considered, which is however beyond the capability of
the cycle-consistency constraint. We show an example in Fig.
1 – directly using StarGAN [4] does not generate a natural
sequence (or expression flow) to gradually close mouth, and
instead there exists a quick change between (c) and (d).

On the other hand, to generate smooth flow, latent space
interpolation [7], [8], [9] focuses on intermediate states based
on an assumption that deep neural networks can model
natural images as flat and smooth distributions. Specifically,
if x and y are sampled from two respective domains X and
Y , moving from x toward y in the latent space continuously
produces realistic images from domain X to Y . Albeit this
nice property, this method cannot directly serve image-to-
image translation because it does not distinguish among
different attribute factors, and thus, for example, makes
complicated expression change always tangled with identity
or background change.

In this paper, we address latent space interpolation in
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Fig. 1. Rendering intermediate states between (a) “open-mouth” domain
and (e) “close-mouth” domain. The first-row results are generated by
StarGAN [4]. Rendering intermediate states is achieved by altering the
input domain label continuously. (c) and (d) show that abrupt change
of expression exists. Our results in the second row model intermediate
regions and have smooth translation effect.

unpaired image-to-image translation. This solution inher-
ently allows modeling intermediate regions between dif-
ferent domains, with additional important and appealing
capacity of multi-domain/multi-modal translation. Since in
a flat and smooth latent space, many paths exist to connect
two samples, interpolating along different paths leads to
diverse intermediate results [10]. Our idea is to choose the
path that only corresponds to a certain attribute component to
make transition natural to human perception. Here the term
attribute defines image domains, e.g., the smiling attribute
divides facial images to smiling and non-smiling domains.
Fig. 2 provides an example where translating between Male
and Female (or Smiling and Non-smiling) can be achieved
by interpolating along path 1(i) (or path 2(i)) respectively.
Besides multi-domain and continuous translation capacity,
as shown in path 1(i) and 3(i), this model can also deal with
multi-modal translation.

With this principle, the key to our method is a control-
lable interpolator, whose output is controlled by a vector v.
Each element of v corresponds to a mixing indicator for each
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Path 1

Path 2

Path 3
(a)

(b)

(c)

(i) Non-smiling à Smiling (ii) Male à Female

(i) Male à Female (ii) Non-smiling à Smiling 

(iii) Change other factors

(iii) Change other factors

(iii) Change other factors(i) Non-smiling à Smiling (ii) Male à Female

Fig. 2. Illustration of latent space interpolation along different paths. Paths 1 and 2 connect (a) “non-smiling male” and (b) “ smiling female”. They
change facial attributes in different orders – i.e., path 1 changes the smiling expression first while path 2 interpolates gender. They naturally serve
the multi-domain image-to-image translation task where path 1(i) and 2(i) form translation between smiling-to-nonsmiling domains and male-
to-female domains respectively. Path 3(i) synthesizes smile different from path 1(i). Thus, using different target-domain samples, our method can
produce results required for each domain, termed as multi-modal image-to-image translation. Image sequence of the last row illustrates the
continuous change of path 3(i).

attribute. Take path 3(i) of Fig. 2 as an example, a proper v
only deals with the smiling attribute between (a) and (c),
while keeping other attributes untouched.

Although promising, this strategy requires conquering
a few difficulties. First, interpolation is only allowed in a
smooth and flat space. VAE [11] imposes Gaussian prior
on the latent feature space so that interpolation is allowed.
However, it may not lead to satisfactory results, as a
Gaussian prior could over-regularize the model, causing
the under-fitting problem [12], [13], [14]. Our solution
is to directly minimize the Wasserstein distance between
the interpolated and real samples of the latent space. This
makes interpolated sample distribution as close as possible
to the real ones. Besides, it does not impose an explicit prior
distribution like VAEs [11], [12], [14], thus less suffer from
the over-regularization problem. We also introduce a knowl-
edge guidance loss that leverages a well-trained network to
regularize the latent space, which further improves inter-
polation quality. Finally, a homomorphic loss is introduced
to train the controllable interpolator. Our contribution is as
follows.

• We propose an interpolation-based framework for
unpaired image-to-image translation, which is fea-
sible for multi-domain, multi-modal and continuous
translation tasks.

• We propose a few important strategies to train our
model, leading to an interpolatable latent space and
a controllable interpolator.

• Extensive experiments show that our model can
generate high-quality results and is flexible to serve
various applications.

This manuscript extends the conference version [15]
with the following major differences. First, we build a new

network architecture with the encoder and decoder, leading
to better quality and higher resolution. Second, during the
course of training encoder and decoder, we additionally
incorporate the style loss (Eq. (4)) and the image-level
adversarial loss (Eq. (5)). Third, we introduce schematic
description (Figs. 3, 4 and 5) to help understand our ap-
proach and the overall framework. Fourth, we conduct more
quantitative analysis in the ablation study, which is included
in Section 4.2. Finally, we present more in-depth analysis of
the scope of applications in Section 5.2.

The rest of the paper is organized as follows. Section
2 reviews literature in latent space interpolation, attribute
conditional image generation, and unpaired image-to-image
translation. In Section 3, we introduce our homomorphic
interpolation network. We show experimental results in
Section 4, discuss the scope of applications in Section 5, and
conclude this paper in Section 7.

2 RELATED WORK

Latent Space Interpolation Latent space interpolation is
widely used to visualize the manifold structure in a flat
feature space [8], [9], [16], [17], [18], [19], [20]. Intuitively,
semantically interpolation in the latent space indicates that
the space captures certain high-level information, which is
beneficial for both recognition tasks [17] and generation
tasks [16]. However, vanilla interpolation between two im-
ages may not be sufficiently useful for generation applica-
tions, since all attributes would change together along the
interpolation path, and users lose control of individuals.

One remedy is to interpolate along attribute vectors rather
than between samples [11], [16], [21], [22], [23], [24], [25].
Reed et al. [25] modeled the analogy relationship with
arithmetic operations. However, it is only applicable to
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analogy tasks. Larsen et al. [11], Kingma et al. [16], Radford
et al. [21] and Karras et al. [22], [23] defined the attribute
vector by computing the difference between the average of
all positive and negative samples in the dataset. Upchurch
et al. [26] used k-nearest positive/negative samples of the
query image instead for computing the attribute vector.
Chen et al. [24] further used a small CNN network to
regress the attribute vector extracted by Upchurch et al.
[26]. These methods aim to cancel out the influence of non-
target attributes and allow users to edit only the target one.
They ignore the fact that many attributes are intrinsically
multi-modal. As illustrated in Fig. 2(b) and (c), smiling can
be quite different. Interpolation with a universal smiling
attribute vector can only generate the average smile. In
contrast, our model can produce multi-modal results with
different examples.

Attribute Conditional Image Generation Attribute Condi-
tional Image Generation [27], [28], [29] synthesize images
based on the attributes provided by users. Yan et al. [27]
proposed a conditional VAE based model that generated an
object image from a high-level attribute description. Lample
et al. [29] used an encoder to map images to attribute-
invariant latent features, then generated the results by
combining the latent features with user-specified attribute
vector. Lu et al. [28] proposed a conditional CycleGAN
that took a low-resolution face and an attribute vector as
an input, then produced a high-resolution image whose
appearance was controlled by the attribute vector. Liu et
al. [30] proposed a flow-based model that can encode a
condition to a latent variable, which allowed for controllable
image synthesis. Our model is intrinsically different from
these methods, as we do not treat the attributes as conditions
for the generator. In our model, the attributes determine
the interpolation path. This allows for generating different
results with different reference images.

Unpaired Image-to-image Translation Unpaired image-to-
image translation [1], [2], [4], [31], [32] aims to map images
of one domain to another. CycleGAN [1], DiscoGAN [2]
and DualGAN [33] are three pioneering methods, which
introduce the cycle-consistency constraint to build the con-
nection. There are however a few remaining issues.

The domain scalability issue refers to the incapability
of handling more than two domains, which is addressed
by StarGAN [4], AttGAN [34] and ModularGAN [35]. Star-
GAN [4] addresses this issue by taking both an image and
the target domain label as input of the generator. Then
the generator produces a translated image based on the
domain label. AttGAN [34] learns a generic latent feature
with its encoder, followed by decoder that generates images
of the target domain by jointly taking the latent feature and
the domain label. ModularGAN [35] handles this issue by
training shared encoder/decoder as well as a set of reusable
attribute transformation module. Each module handles the
translation between two domains.

The multi-modality issue refers to incapability to pro-
duce multiple results, which is addressed by Bicycle-
GAN [6], GDWCT [36], MUNIT [37] and DRIT [3]. Bi-
cycleGAN [6] introduces a latent code to the CycleGAN
framework. Different latent codes lead to styles of the

generated results. GDWCT [36] has an efficient whitening-
and-coloring transformation for image-to-image transla-
tion. Multi-modality can be achieved using different refer-
ence/style images. MUNIT [37] and DRIT [3] decompose
an image into two components, i.e., a content code that is
domain invariant, and a style code that captures domain-
specific property. Translation is achieved by recombining the
content code with different style codes in another domain.

The discreteness issue refers to the inability to continu-
ously control the transformation strength between two do-
mains, which is addressed by GANimation [38] and DLOW
[39]. GANimation [38] focuses on facial expression trans-
lation. It achieves continuous translation by introducing
action unit annotation, which describes in the anatomical
facial movement defining facial expression. Note that the
continuous action unit annotation is costly and limited in
the field of facial expression. DLOW [39] uses a variable in
CycleGAN [1] to translate images from the source domain to
intermediate domains. Since there exist many paths between
two domains, DLOW [39] follows the shortest geodesic
path. It is intrinsically different from our model since ours
allows interpolation along different paths, leading to diverse
yet reasonable intermediate results.

Compared with these methods, our model seeks another
way to tackle the unpaired image-to-image translation prob-
lem. It can be deemed as a general alternative that tackles
the domain scalability, multi-modality and discreteness is-
sues simultaneously.

3 PROPOSED METHOD

Without loss of generality, we take the face attribute trans-
lation task as an example to explain our method. We define
the dataset as D = {(x1,y1), (x2,y2) · · · (xN ,yN )} of N
samples, where xi ∈ RH×W×3 and yi = [y1

i ,y
2
i , · · · ,yd

i ]
are the i-th face image and its corresponding attributes
respectively. The subscript and superscript index samples
and attributes respectively.

We further introduce the concept of grouped attribute.
For example, we can group angry, happy, sad, contemptuous,
disgusted, fear, and surprise – these attributes are provided in
RaFD [40] dataset as binary attribute labels – to form the
group expression attribute. Thus, the plain attributes yi can
be rearranged to zi = {z1

i , z
2
i , · · · , zc

i }, where zk
i ∈ Rci×1

denotes the k-th grouped attribute of the i-th sample. This
makes it more intuitive to use our model. An instance is a
path among 1(i), 2(ii) and 3(i) of Fig. 2, with the expression
attribute. It considers the 8 expressions rather than only
smiling.

In the model level, we have an encoder E, an interpo-
lator I and a decoder D. The encoder E maps images xi

and xj to feature Fi = E(xi) and Fj = E(xj), so that the
interpolated feature I(Fi,Fj) is indistinguishable from real
samples. The interpolator I produces interpolated results of
two samples. The decoder D maps the latent features back
to the image space. The pipeline is illustrated in Fig. 3. In
the following, we will elaborate on the design of each part.

3.1 Learning Encoder and Decoder
It is well known that natural images usually lie on a non-
convex manifold, making interpolation usually difficult. We
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𝒙𝒊

𝒙𝒋
(a) Encoder

𝑭𝒊

(b) Interpolator

𝑰(𝑭𝒊 , 𝑭𝒋)

(c) Decoder
𝑭𝒋

𝒙𝒐𝒖𝒕𝑭𝒊

𝑭𝒋

𝑰(𝑭𝒊 , 𝑭𝒋)

Fig. 3. Pipeline of the proposed homomorphic interpolation framework. (a-c) are the encoder, interpolator and decoder respectively. Given input
image xi and reference image xj , the encoder E maps them to interpolatable latent feature Fi and Fj . Then the interpolator I performs
interpolation between Fi and Fj . Finally, the decoder D inverts the interpolated feature back to the image space.

train an encoder to unfold the image manifold, such that the
interpolated samples are easier to be in image space. This
is achieved by applying GAN to make interpolated feature
similar to that of real samples.

Specifically, we leverage WGAN-GP [41] to train our
model. A feature-level discriminator D1 is trained to maxi-
mize the Wasserstein distance between real and interpolated
samples. The encoder E and interpolator I are trained to
minimize the distance between them. It is formulated as

min
D1

LD1 = EPI
[D1(F̂ )]− EPr

[D1(F )] + λgpLgp, (1)

min
E,I
LGAND1

= EPr
[D1(F )]− EPI

[D1(F̂ )], (2)

where F = E(x) is the feature extracted by the encoder, F̂
is the interpolated feature generated by F̂ = I(Fi,Fj), Pr

and PI are the distributions of real and interpolated samples
respectively, and Lgp is the gradient penalty term defined
in [41]. Here the interpolator I works with the encoder E
cooperatively to generate reasonable images. More details
of the interpolator I will be discussed in the later section.

Note that simply using Eqs. (1) and (2) may cause the
encoder to map all images to a small feature space where
interpolation becomes easy. To an extreme, if the encoder
maps all images to a single point, the interpolated and real
samples yield Wasserstein distance 0. But this trivial solu-
tion carries no information about the images. To avoid it, we
additionally incorporate a decoder D to invert features back
to images. With this decoder D, we define a reconstruction
loss as

min
E,D
Lrecon = E(||Φ3(D(E(x)))− Φ3(x)||2), (3)

where Φ3(x) is the RELU3 1 feature of the VGG network.
To encourage the encoder and decoder better describe

and reconstruct details, we further add a style loss and an
adversarial loss. The style loss is

min
E,D
Lstyle = E(||G(D(E(x)))−G(x)||2), (4)

where G(x) returns the Gram matrix in the VGG feature
space of x, i.e., G(x)i,j = Φ3(x)Ti Φ3(x)j , and Φ3(x)Ti
denotes the i-th location of the feature map.

Defining D2 in the function of

max
D2

LD2 = E[log(1−D2(x)) + log(D2(D(E(x))))],

we further add the adversarial loss as

max
E,D
LGAND2

= E[log(1−D2(D(E(x))))], (5)

where D2 is an image-level discriminator that tells whether
an image is real or fake. Spectral normalization [42] is
applied to D2 to improve the training stability.

The style loss (4) matches local statistics between the
output image and the original one in the ReLU3 1 VGG
layer. It is shown that this loss is useful in style transfer
[43] and super-resolution [44]. It is also useful in boosting
textural fidelity of our model. The adversarial loss (5) makes
the generated images similar to the real ones. This also leads
to improvement of visual quality.
Semantic Knowledge Guidance Previous work has ob-
served that a pretrained VGG network [45] can be utilized
for latent space interpolation [17], [24], [26]. We leverage
this property to guide the training of our encoder. Inspired
by [46], [47], we treat a pretrained VGG network as a teacher,
and use its intermediate layer to guide training of our
encoder:

min
E,P
LKG = EPr ||P [E(x)]− Φ5(x)||2, (6)

where P is an 1 × 1 convolutional layer that adapts the
feature space defined by E(I) to that defined by Φ5(x). Φ5

denotes the ReLU5 1 layer of the VGG network [45]. As the
VGG network is trained with millions of images, Φ5(x) con-
tains rich semantic information and provides extra guidance
for the encoder. Generally, this term works as regularization
and helps the encoder converge to a good point.

Combining Eqs. (2), (3) and (6), the final objective func-
tion of the encoder E and decoder D is

LE,D = LGAND1
+Lrecon +Lstyle +LGAND2

+LKG, (7)

where the weights of each term are set to 1.

3.2 Learning Interpolator
With a well-learned encoder that maps images to an easier
space, interpolation can be done linearly as

I(Fi,Fj) = Fi + α(Fj − Fi), (8)

where Fi and Fj are two real samples, and α ∈ [0, 1] is a
parameter that controls the level of mixing of two samples.
The second term α(Fj −Fi) can also be viewed as a shifting
vector that points from Fi towards Fj .

Note that Eq. (8) only defines one possible path that
connects samples i and j. Other interpolation methods, like
Slerp [48], can also connect them and produce different
intermediate results. Nevertheless, all these handcrafted
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𝑭𝒊

𝑭𝒋

𝑭𝒋 −𝑭𝒊
𝑰𝑣(𝑭𝒊 , 𝑭𝒋)

𝑣(1)

𝑣(2)

𝑣(𝑘)

multiply sum conv netfeature

Fig. 4. Illustration of the interpolator. Each conv net branch refers to
T (i)(·), and their weighted sum forms the interpolator.

methods do not allow adjusting how attributes are mixed.
So they are not usable for our task. To accommodate image-
to-image translation, we extend I(Fi,Fj) to a more flexible
Iv(Fi,Fj), where v ∈ [0, 1]c×1 is a control vector. Each di-
mension of v sets the interpolation strength of each grouped
attribute between two samples. More specifically, the linear
interpolation defined in Eq. (8) is extended to a piecewise
one as

Iv(Fi,Fj) = Fi +
c∑

k=1

vkT k(Fj − Fi), (9)

where vk is the kth dimension of v, and T k(·) is a learnable
mapping function represented by CNN. The architecture of
interpolator is illustrated in Fig. 4.

3.2.1 Minimizing Homomorphic Gap
It is expected that T k(Fj − Fi) and vk correspond to the
interpolation direction and strength of the kth grouped
attribute zk respectively. As vk varies from 0 to 1, the kth

grouped attribute changes from sample i to j accordingly.
It is notable if all possible values of z form an attribute
space, interpolation in the latent feature space should cor-
respond to interpolation in the attribute space. Let A(·) be a
function that maps latent feature to an attribute vector, i.e.,
A(Fi) = zi. We define the relation between the latent space
and the attribute space as

A(Iv(Fi,Fj)) = I ′v(A(Fi),A(Fj)),∀v ∈ [0, 1]c×1 (10)

where I ′v(zi, zj) can be viewed as an interpolation func-
tion defined in the attribute space. Further, I ′v(zi, zj) is de-
fined as I ′v(zi, zj) = [I ′v(zi, zj)

1, · · · , I ′v(zi, zj)
c], where

I ′v(zi, zj)
k = zk

i + vk(zk
j − zk

i ). The left-hand side of Eq.
(10) denotes the attribute values of interpolated samples
Iv(Fi, Fj), where the other side contains the corresponding
attribute values of the two samples. Since both sides are
conditioned on the same control vector v, they are expected
to be equal. In this regard, Eq. (10) describes an ideal case
that interpolation operations Iv and I ′v share the same
structure in the latent feature and attribute space. This prop-
erty looks similar to homomorphism in algebra. In practice,
there inevitably exists a gap between two sides of Eq. (10),
which we call homomorphic gap.

With Eq. (10) introduced, our objective turns to mini-
mizing the homomorphic gap. Recall that A(·) maps the

Smile: 0.5

Male: 1

…

Smile: 1

Male: 1

…

Smile: 1

Male: 0.5

…

Smile: 1

Male: 0

…

Latent feature space

Attribute space

𝓐′(⋅)

Homomorphic gap: 𝑰𝒗
′ 𝒛𝒊, 𝒛𝒋 𝐥𝐨𝐠(𝓐′ 𝑰𝒗 𝑭𝒊, 𝑭𝒋

𝑰𝒗
′ 𝒛𝒊, 𝒛𝒋

𝓐′ 𝑰𝒗 𝑭𝑖 , 𝑭𝑗

𝑰𝒗 𝑭𝑖 , 𝑭𝑗

Fig. 5. Illustration of the homomorphic loss. The blue and yellow curves
are the interpolation path of the feature space and attribute space
respectively. The 4 cuboids (upper blue curve) and the 4 attribute vectors
(lower yellow curve) illustrate sample points in the interpolation paths.
Images above the cuboids visualize the decoding results of the features.
To compute the homomorphic loss, we first use the attribute classifier
A′(·) to map the features to the attribute space. The predicted attributes
are illustrated as the green curve. Finally, the homomorphic loss can be
computed by measuring the gap between the A′(Iv(Fi,Fj)) (green
curve) and I′

v(zi,zj) (yellow curve).

latent feature to attribute values, which is not defined
for interpolated features. We choose to train a network
A′(·) to approximate A(·) and replace A(Iv(Fi,Fj)) with
A′(Iv(Fi,Fj)) in Eq. (10). Then we reduce the homomor-
phic gap by minimizing the binary cross-entropy loss of
I ′v(zi, zj) and A′(Iv(Fi,Fj)) as Eq. (11). Each attribute is
counted separately. We call this loss the Homomorphic loss.
The idea is also illustrated in Fig. 5.

min
Iv

LIhom
= E[−I ′v(zi, zj) log(A′(Iv(Fi,Fj)))]. (11)

Note that v is defined everywhere in the c-dimensional unit
hypercube. During training, we assign uniformly random
values to v to cover the whole feasible set.

3.2.2 Rigorous Training
According to Eq. (9), optimizing Eq. (11) needs to optimize
T k(·), where k = 1, · · · , c. In our experiments, when
complicated attributes exist, the corresponding T k(·) tends
to be lazy – that is, it may update Fi slightly to fool
the attribute classification network A′(·). To alleviate this
problem, we turn A′(·) to a rigorous classifier: instead of
mapping Fi to zi, A′(·) is trained to map the interpolated
feature Fi +

∑c
k=1 v

kT k(Fj −Fi) to attribute zi, expressed
as

min
A′
LA′ = E[−zi log(A′(Iv(Fi,Fj)))]. (12)

From Eqs. (11) and (12), we note that Iv(·) and A′(·)
are mutually dependent. Therefore, they are iteratively up-
dated during training. In this way, A′(·) keeps checking
unchanged parts, making it harder for T k(·) to fool it.
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Note that this rigorous training strategy is applied to all
attributes. For more analysis and experimental validation,
please refer to the supplementary material.

3.2.3 Handling Residual Components

When v = 1, where 1 = [1, 1, · · · , 1] ∈ Rc×1, Iv(Fi,Fj) is
expected to reach sample j. However, this is not guaranteed
with solely the homomorphic loss, because the provided
attributes may not explain all information. Therefore, we
extend Eq. (9) to

Iv(Fi,Fj) = Fi +
c+1∑
k=1

vkT k(Fj − Fi), (13)

where the additional mapping function T c+1(Fj−Fi) mod-
els the residual components that are not explained by the
given attributes. Accordingly, we extend the c-dim control
vector v to c + 1 dim, where the last dimension is the edit
strength of the residual mapping function. Now we can
safely impose the terminal of the interpolation curve as Fj ,
which is formulated as

LI1 = ||Iv(Fi,Fj)− Fj ||2,where v = 1. (14)

To summarize this part, the overall loss function of Iv is

LI = LGAND1
+ LIhom

+ λI1LI1 , (15)

where LGAND1
, LIhom

, and LI1 are defined in Eqs. (2), (11)
and (14) respectively. λI1 is set to 10 in our experiments.

3.3 Applications

We describe how our model can be applied to multi-domain,
multi-modal and continuous translation as follows.

3.3.1 Multi-domain Translation

For each target domain t, we preselect a sample It as
exemplar. Given a query sample Iq , domain translation is
conducted as

xout = D(Ivt
(E(xq),E(xt))), (16)

where vt is the vector corresponding to the target domain.

3.3.2 Multi-Modal Translation

Using different exemples in Eq. (16), we can generate results
like MUNIT [37].

3.3.3 Continuous Translation

By changing vt in Eq. (16) smoothly, our model allows
changing attributes continuously. This controls the edit
strength or generates animation along the translation pro-
cess.

Fig. 8 illustrates how changing v and exemplar affects
the results, leading to multi-domain and multi-modal trans-
lation. Fig. 1 illustrates the continuous translation.

3.4 Implementation Details

Layer Type Norm Activation Input Size Output Size
Conv(4,2,1) IN LReLU H ×W × C H

2 ×
W
2 × 2C

Conv(3,1,1) IN LReLU H
2 ×

W
2 × 2C H

2 ×
W
2 × 2C

Conv(3,1,1) IN LReLU H
2 ×

W
2 × 2C H

2 ×
W
2 × 2C

(a) DownBlock

Layer Type Norm Activation Input Size Output Size
Deconv(4,2,1) IN LReLU H ×W × C 2H × 2W × C

2

Conv(3,1,1) IN LReLU 2H × 2W × C
2 2H × 2W × C

2

Conv(3,1,1) IN LReLU 2H × 2W × C
2 2H × 2W × C

2

(b) UpBlock

Layer Type Norm Activation Input Size Output Size
Conv(3,1,1) IN LReLU 256× 256× 3 256× 256× 16
DownBlock IN LReLU 256× 256× 16 128× 128× 32
DownBlock IN LReLU 128× 128× 32 64× 64× 64
DownBlock IN LReLU 64× 64× 64 32× 32× 128
DownBlock IN LReLU 32× 32× 128 16× 16× 256
DownBlock IN LReLU 16× 16× 256 8× 8× 512
DownBlock IN LReLU 8× 8× 512 4× 4× 1024

(c) Encoder E

Layer Type Norm Activation Input Size Output Size
Conv(3,1,1) - LReLU 4× 4× 1024 4× 4× 1024
Conv(3,1,1) - LReLU 4× 4× 1024 4× 4× 1024
Conv(3,1,1) - - 4× 4× 1024 4× 4× 1024

(d) One Branch of Interpolator T i

Layer Type Norm Activation Input Size Output Size
UpBlock IN LReLU 4× 4× 1024 8× 8× 512
UpBlock IN LReLU 8× 8× 512 16× 16× 256
UpBlock IN LReLU 16× 16× 256 32× 32× 128
UpBlock IN LReLU 32× 32× 128 64× 64× 64
UpBlock IN LReLU 64× 64× 64 128× 128× 32
UpBlock IN LReLU 128× 128× 32 256× 256× 16

Conv(3,1,1) - - 256× 256× 16 256× 256× 3

(e) Decoder D

Conv(1,1,1) IN LReLU 4× 4× 1024 4× 4× 256
Conv(4,2,1) IN LReLU 4× 4× 512 2× 2× 512
Conv(1,1,1) IN LReLU 2× 2× 512 1× 1× 512

FC(D1) - - 1× 1× 512 1× 1× 512
FC(A′) - - 1× 1× 512 1× 1× c

(f) Feature-level Discriminator D1 and Attribute Predictor A′

Conv(4,2,1) IN LReLU 256× 256× 3 128× 128× 64
Conv(4,2,1) IN LReLU 128× 128× 64 64× 64× 128
Conv(4,2,1) IN LReLU 64× 64× 128 32× 32× 256
Conv(4,2,1) IN LReLU 32× 32× 256 16× 16× 512

(g) Image-level Discriminator D2

TABLE 1
Architecture of the Homomorphic Interpolation Network. It contains an

encoder, an interpolator and a decoder. Conv(3,1,1) denotes the
convolutional layer, with the 1st − 3rd parameters denoting kernel size,
stride and padding respectively. (a) and (b) define two basic blocks of

DownBlock and UpBlock. The encoder and decoder are built upon
these blocks. (c-g) are the architectures of our model.

3.4.1 Network Architecture

Table 1 shows the architecture of our model. We first define
two basic blocks – the down-sampling block (DownBlock)
and up-sampling block (UpBlock) in Table 1(a) and Table
1(b). Table 1(c) and Table 1(e) list the architecture of encoder
and decoder, which is defined based on the basic blocks.
Table 1(d) shows one branch of the interpolator.

In Table 1(f), the feature-level discriminator D1 and the
attribute predictor A′ share convolutional layers except for
the fully-connected layers. FC(D1) and FC(A′) are fully-
connected layers of D1 and A′ respectively. Note that the
output channel of discriminator D1 is 512. In our exper-
iments, it leads to more stable training than setting the
channel number to 1.
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Table 1(g) shows the architecture of image-level discrim-
inator D2. It is in patch-level, and thus mainly focuses on
local regions. Spectral normalization [42] is applied to D2

to stabilize the training.

3.4.2 Training Details
The training procedure is outlined in Algorithm 1. We use
the Adam optimizer [49] to train our model, with β1 and β2
set to 0.5 and 0.999 respectively. We set the batch size as 64.
Following TTUR [50], the learning rate for discriminators
D1 and D2 is set as 1×10−5. For other components it is 1×
10−4. Before training the whole model as Algorithm 1, we
found it benefitial to pretrain the encoder E and decoder D
with Lrecon+Lstyle+LGAND2

+LKG. After pretraining, the
encoder and decoder can well reconstruct training samples,
making it easier to achieve high-quality results in the whole-
model training.

4 EXPERIMENTAL RESULTS

4.1 Datasets
Our experiments are conducted on CelebA-HQ [22] and
RaFD [40]. CelebA-HQ contains 30k celebrity images, each
with 40 attribute labels. We define grouped attributes based
on these labels as shown in Table 2. We randomly use
27k images for training and 3k for testing. RaFD [40] is a
smaller dataset that contains 67 identities, each displaying 8
emotional expressions, 3 eye locations, and 3 other attributes
about the identities. Similarly, we group these labels into 3
higher-level attributes as shown in Table 3. In our experi-
ments, we use 65 identities for training and the other two
for testing. All images are center cropped and resized to
256× 256.

4.2 Ablation Analysis
4.2.1 Pivotal Parts in Training
It should be noted that all loss functions, including LGAND1

(Eq. (2)), Lstyle (Eq. (4)), LGAND2
(Eq. (5)) LKG (Eq. (6)),

and LHom (Eq. (11)), play an important role in our model.
Without any of them, training may converge to an inferior

Algorithm 1 Training our model
Input: xi and zi, where i = 1, 2, · · · , N
Output: encoder E, interpolator Iv and decoder D

while not converged do
get a new batch from the dataset;
sample v from c dimensional uniform distribution;
t← 0;
update the feature-level discriminator D1 based on Eq.
(1);
update the attribute classifier A′ based on Eq. (12);
if t mod 5 == 0 then

update the image-level discriminator D2 based on
Eq. (5);
update P , encoder E and decoder D based on Eq.
(7);
Update Iv based on Eq. (15).

end if
end while

Dim Attribute Labels
1 Age Young
2 Expression Mouth Slightly Open, Smiling
3 Hair Color Black Hair, Blond Hair Brown Hair, Gray Hair
4 Hair Style Bald, Receding Hairline, Bangs
5 Gender Trait Male, No Beard, Mustache, Goatee, Sideburns

TABLE 2
Grouped Attributes of CelebA-HQ [22]. The 1st-3rd columns:

dimension index in the control vector v, name of grouped attributes,
corresponding attribute labels.

Dim Attribute Labels

1 Expression happy, angry, contemptuous, sad,
disgusted, neutral, fearful, surprised

2 Gaze look left, look front, look right
3 ID Traits is Caucasian, is male, is kid

TABLE 3
Grouped attributes of RaFD [40].

point, leading to unsatisfactory results. To illustrate this, we
disable each part and compare it with our final result in
Fig. 6. As shown in Fig. 6(c), without the homomorphic loss
LHom (Eq. (11)), the generated images cannot transfer the
target attributes from the reference images. The adversarial
loss in pixel space LGAND2

(Eq. (5)) is related to details of
the generated images. As shown in Fig. 6(d), without this
term, the generated images lack details and look blurry. The
adversarial loss in feature space LGAND1

(Eq. (2)) and the
knowledge guidance regularization LKG (Eq. (6)) are also
related to the quality of generated results. Without each of
them, the encoder may not learn a smooth enough latent
space. As shown in Fig. 6(e-f), it could cause visual artifacts
in eyes and hair regions. Disabling the style loss Lstyle (Eq.
(4)) causes relatively smaller quality degradation, which is
shown in Fig. 6(g).
Quantitative Analysis To quantitatively evaluate the effec-
tiveness of each loss, we introduce the translation accuracy
(ACC) and the Fréchet Inception Distance (FID score) [50]
for quantitatively measuring the effectiveness of our ap-
proach.

Translation accuracy measures the domain label correct-
ness of the edited images. More specifically, it is defined as
the percentage that the edited images have identical target
attribute with the reference image, i.e.,

ACC =

∑N
i=1 δ[C(xout

i ) == yref
i ]

N
, (17)

where xout
i is the i-th edited image, yref

i is the target
attribute (e.g., Gender) of its reference image, C(·) is an
attribute classifier that estimates the target attribute of xout

i ,
and δ(·) is a function that outputs 1 if the estimated target
attribute agrees with that of the reference image yref

i , and 0
otherwise.

FID score measures mean and covariance difference be-
tween generated and real images in a deep feature space
(typically the final average pooling layer of Inception V3).
It is defined as

FID = ||mout−m||22 + Tr(Cout +C−2(CoutC)
1
2 )), (18)

where mout, Cout, m and C are the mean and covariance
of generated and real images respectively. As shown in [50],
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Fig. 6. Effectiveness of each term of the loss functions. (a) is the reference image. (b) is the original image. (c-g) are the results without each term.
(h) is our final result.
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Fig. 7. Quantitative results of each terms of our model. The x- and y-axis are the translation accuracy (the larger the better) and FID score (the
smaller the better). “w/o LGAND1

”, “w/o Lstyle” , “w/o LGAND2
”, “w/o LKG”, and “w/o LHom” are results by removing LGAND1

(Eq. (2)),
Lstyle (Eq. (4)), LGAND2

(Eq. (5)) LKG (Eq. (6)), and LHom (Eq. (11)) respectively. Each curve is plotted with different edit strength.

(a) Ref (b) Original (c) Expression (d) Gender (e) Hair Color (f) Ref (g) Original (h) Expression (i) Gaze (j) ID traits

Fig. 8. Illustration of the roles of control vector and exemplar. (a-e) and (f-j) are the results of CelebA-HQ and RaFD datasets respectively. (a) and
(f) are the reference images. (b) and (g) are the original images. (c-e) and (h-j) are results of setting different control vectors v. Rows 1 and 2 are
results of using different reference images.

FID score is sensitive to various variations, such as noise,
blurring, and swirling. It can be used for measuring the
degree of realism of our generated images.

Note that our model allows changing the edit strength.
Larger strength makes the change more significant, and thus
leads to higher translation accuracy. On the other hand,

artifacts may also be amplified when edit strength is large.
In this regard, we compute the translation accuracy and FID
under different edit strength, varying from 0 to 2, and plot
the “FID vs ACC” curves as shown in Fig. 7.

Without the homomorphic loss LHom (Eq. (11)), the
translation accuracy remains small even if the edit strength
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is large. Without the adversarial loss in pixel space LGAND2

(Eq. (5)), the FID score is much higher than the final model.
Disabling other loss functions also raises the FID score when
the translation accuracy is the same. This demonstrates the
effectiveness of these loss functions.

4.2.2 Pivotal Parts in Testing

During testing, the control vector v and the reference exem-
plars are important to control the translated results of our
model. The control vector determines which attribute to al-
ter, while the exemplars determine how attribute translation
is instantiated. Using both of them, we flexibly control the
generated results. This is illustrated in Fig. 8, where (a-e)
and (f-j) are the results of CelebA-HQ [22] and RaFD [40]
respectively.

For results of each dataset, each row shows how results
are changed with the same exemplars and different control
vectors, while each column gives results with the same
control vector and yet different exemplars. As shown in
Fig. 8(c-e), by setting v to the one-hot vectors represent-
ing the expression, gender, and hair color respectively, we
effectively vary corresponding attributes. In Fig. 8(h-j), by
choosing specific control vectors, we alter the expression,
gaze and identity traits of the man in RaFD [40] dataset
respectively. The exemplars also affect the final results. For
example, in Fig. 8(c-e), results in the 1st and 2nd rows have
quite different gender, expression, hair color change; while
in Fig. 8(h-j), the difference in expression, gaze and identity
traits is also significant.

4.3 Comparison with Other Methods

One of the largest advantages of our model is the abil-
ity to handle multi-domain, multi-modal and continuous
image-to-image translation simultaneously. In this section,
we provide both qualitative and quantitative comparison
with other methods.

4.3.1 Qualitative Evaluation

Multi-Domain Translation Our model deals with multi-
domain image-to-image translation with Eq. (16). Figs. 9
and 10 compare our results with two related methods,
i.e., StarGAN [4] and AttGAN [34]. StarGAN [4] takes
domain labels as input to generator, and produces target
domain results. AttGAN [34] uses an encoder to encode
images to domain invariant latent feature, and the decoder
generates images based on the latent feature and domain
labels. Visually, our model accomplishes more natural – and
with significant changes – results than AttGAN [34] and
StarGAN [4]. AttGAN [34] extracts latent feature that can
work cooperatively with domain labels. When the latent
feature contains domain information, the translated results
may not be sufficiently strong. StarGAN [4] works well, and
yet still occasionally produces unexpected edit, leading to
visual artifacts.

Multi-Modal Translation Using different exemplars, our
model can produce multiple results for image-to-image
translation. Fig. 11 compares our approach with two multi-
modal translation methods, i.e., MUNIT [37] and GDWCT

[36]. GDWCT [36] decomposes images into domain-
invariant content space and domain-specific style space.
Then it applies group-wise deep whitening-and-coloring
transformation to image translation from one domain to
another based on exemplars. In addition to the target at-
tributes, it tends to change the color and brightness of the
images largely, leading to unnatural results. Compared with
our method, MUNIT [37] does not leverage information of
multiple domains. When skin, hair color and background
are wrongly edited, as shown in Fig. 11, the result quality
reduces.

Continuous Translation With the well learned latent space,
our model allows synthesizing images across different do-
mains. This has already been shown in Figs. 1 and 2. Despite
this, we also note that a good latent space should uncover
the structure of natural image manifold [18]. To an extreme,
it should even gain the capacity of extrapolation. This allows
exaggerating the difference between two domains. Fig. 12
compares the interpolation/extrapolation capacity of our
model with Facelet [24], AttGAN [34] and Fader Networks
[29].

Facelet [24] is a feature interpolation approach whose la-
tent feature is defined by a pretrained VGG network. Similar
to ours, it requires only discrete attribute labels and has the
capability to translate between different domains smoothly.
However, when applying very strong edit strength, the
result quality could drop. Similarly, when applying strong
edit strength to AttGAN [34], much artifact emerges, while
the target attribute does not exaggerate. Fader Networks
disentangle the attribute-invariant feature of an input im-
age, and generate a new one by combining it with other
attributes. It does not explicitly constrain the smoothness of
the latent space, and the interpolation/extrapolation results
are not as good as ours. In contrast, our model works
consistently well in both situations of interpolation and
extrapolation. This indicates that the encoder trained by Eq.
(7) actually unfolds the natural image manifold, leading to
a flat and smooth latent space that allows interpolation and
even extrapolation.

4.3.2 User Study
We have also conducted user study on the Amazon Mechan-
ical Turk platform to compare our performance with others.
Turing Test and A/B Test are conducted.

Turing Test Each time subjects are presented with an
arbitrary real image and the other that is edited by one
method. They are requested to pick the real one. Table 4
shows the percentage that an edited image is regarded as
real. Note that different attributes are counted separately,
each including 1,000 comparisons. Higher values mean that
human is harder to distinguish between the real image and
edited one. The final statistics show that our model has 43%
chance to fool human eyes, which outperforms StarGAN [4]
(31%), AttGAN [34] (30%), Facelet [24] (28%), GDWCT [36]
(32%) and MUNIT [37] (13%).

A/B Test A/B Test refers to the pair-wise comparison of our
model and another baseline model. Each time subjects are
given an original image and two edited ones (our method
vs. another), and are asked to pick the one with higher
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Fig. 9. Multi-domain image-to-image translation on CelebA-HQ [22].
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Fig. 10. Multi-domain image-to-image translation on RaFD [40].

Young Male Smiling Black Hair Bangs Mustache Hairline Mouth Open Total
MUNIT [37] 9% 12% 22% 12% 11% 8% 15% 17% 13%
GDWCT [36] 20% 18% 25% 22% 19% 18% 31% 27% 23%
Facelet [24] 27% 32% 33% 28% 29% 44% 10% 18% 28%

AttGAN [34] 29% 30% 38% 30% 27% 35% 19% 33% 30%
StarGAN [4] 29% 24% 36% 24% 31% 45% 23% 33% 31%

Ours 45% 36% 48% 45% 38% 47% 42% 44% 43%

TABLE 4
Turing Test on CelebA-HQ [22] dataset. Each entry reports the percentage of taking the edited image as real (the higher the better).

Young Male Smiling Bangs Black Hair Hairline Mustache Mouth Open Total
Ours > MUNIT [37] 80% 75% 73% 69% 68% 67% 75% 73% 73%
Ours > GDWCT [36] 70% 60% 63% 64% 70% 52% 57% 65% 63%
Ours > Facelet [24] 67% 74% 75% 62% 81% 62% 55% 78% 69%

Ours > AttGAN [34] 65% 58% 62% 60% 56% 51% 53% 69% 59%
Ours > StarGAN 73% 60% 71% 58% 52% 48% 57% 72% 61%

TABLE 5
A/B Test on CelebA-HQ [22] dataset. Each entry reports the percentage that our results are preferred. Larger than 50% indicates that our method

is statically more preferred by the subjects.

edit quality. Similar to the Turing Test, different attributes
are separately counted, each including 1,000 comparisons.
Table 5 presents the percentage that images generated by
our method are chosen. Overall, our method outperforms

StarGAN [4], AttGAN [34], Facelet [24], GDWCT [36] and
MUNIT [37] by 61%, 59%, 69%, 64 % and 73 % respectively.
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Fig. 11. Multi-modal image-to-image translation. The 1st column is the original image, and other columns are different output.

5 APPLICABILITY ANALYSIS

5.1 Failure Cases

Our model relies on the assumption that images of different
domains can be embedded in a smooth and flat space. This
is hardly achieved when these domains are very different.
Fig. 13 illustrates a case that performs translation between
facade images and semantic labels. Our model does not
perform well in this case, since it is very difficult to find
intermediate regions in between.

5.2 Discussion of the Scope of Application

To further understand the scope of application of our ap-
proach, we also propose a measurement to quantify if our
model is applicable.

Intuitively, learning an interpolation model would be
easier when samples of two domains locate nearby, and
there exist samples in-between. Typical tasks include age
progression, expression manipulation, hair color change,
etc. For these tasks, images of opposite attributes (e.g.,
young vs. old) are not absolutely different. Instead, there
must be ambiguous samples that lie in-between (e.g., neither
too young or too old). These ambiguous examples provide
guidance to model intermediate regions between different
domains, making learning easier.

In contrast, if no or very few samples are between two
domains, the intermediate regions are not well defined. Our

model is not expected to work well in this case. When
training such tasks (e.g., Label vs Facade in Fig. 13), the
feature-level discriminator D1 is optimized quickly, which
confidently distinguish between real and interpolated fea-
tures. As a result, it suffers from the gradient vanishing
problem and cannot provide sufficient information to train
the interpolator.

With this understanding, we intriguingly measure to
what degree two domains are separated. For our interpo-
lation model, completely separate domains are difficult to
learn, while closely located domains are easier to handle.

Intuitively, measuring the separability of domains can
be achieved with a domain classifier. To this end, we can
train a CNN with a softmax layer to classify two opposite
domains (e.g., Young vs. Old). Note that the softmax layer
outputs probability of each domain. Thus we measure how
confident the CNN is by calculating the entropy of output.
A small entropy means the CNN is very confident about its
prediction, indicating that the domains are well separated,
while a large one suggests that the domains are close.

Note that a standard CNN may exaggerate the confi-
dence. We thus apply temperature scaling to calibrate the es-
timated probability values [51]. Table 6 shows the estimated
entropy on different attributes. Our model is not applicable
when the output prediction has a very low entropy.
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(a) Continuously translate the original image (left most) towards smiling.
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(b) Continuously translate the original image (left most) towards male.

Fig. 12. Illustration of continuous translation. The first column is the original image. The 2nd-6th images are the results of interpolation, and the
7th-11th columns are the extrapolation results achieved by further increasing the interpolation strength.

Label ⇒ Facade Facade ⇒ Label

Fig. 13. A failure case. Our method does not perfectly handle the
situation when two domains are essentially different.

TABLE 6
Applicability analysis of our model. We train a resnet-6 model

until it achieves optimal accuracy. The entropy of output
prediction is computed in the testing set.

Task Young Smile Male Cat/Dog Facades Cat/Bird
Entropy 0.297 0.206 0.143 0.071 9.64e-6 8.58e-6

Accuracy 87.6% 89.3% 92.0% 100% 100% 100%
Applicable True True True True False False

6 COMPLEXITY ANALYSIS

Our network contains an encoder E, an interpolator I , a

decoder D, and two discriminators D1 and D2. We analyze
the complexity of each part in a TITAN XP GPU, with input
size 256×256. Table 5.2 summarizes running time, GFLOPS
and the number of parameters of each part. As shown, the
total number of parameters is 934.25 MB and the GFLOPs is
12.12. Although it is not light-weighted, the actual running
time is 11.48 ms per image during inference, which allows
real-time applications. The reason for the high-speed is that
our model is most built upon convolutions, which largely
benefit from the highly optimized CUDA implementation.

7 CONCLUDING REMARKS

We have proposed a framework for unpaired image-to-
image translation focusing on generating natural and gradu-
ally changing intermediate results. Our method is based on
latent space interpolation, which intrinsically allows con-
tinuous translation. In addition, by learning a controllable
interpolator, we flexibly select the interpolation path, which
alters the target attribute while keeping others almost intact.
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TABLE 7
The running time, GFLOPS and model size of our model. “Total(test)” accumulates the metrics of the encoder, interpolator, decoder, indicating the

computational cost during testing. “Total” accumulates that of all the five modules.

Encoder (E) Interpolator (I) Decoder (D) Discriminator (D1) Discriminator (D2) Total (test) Total
running Time (ms) 4.31 2.82 4.35 1.22 2.16 11.48 14.86

GFLOPS 2.52 2.72 5.19 0.03 1.66 10.43 12.12
Parameters (MB) 149.56 679.55 69.99 24.12 11.03 899.10 934.25

We have also shown that our method can serve multi-
domain and multi-modal image-to-image translation.
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