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PointINS: Point-based Instance Segmentation
Lu Qi‡, Yi Wang‡, Yukang Chen‡, Ying-Cong Chen, Xiangyu Zhang∗ , Jian Sun, Jiaya Jia

Abstract—In this paper, we explore the mask representation in instance segmentation with Point-of-Interest (PoI) features. Differen-
tiating multiple potential instances within a single PoI feature is challenging, because learning a high-dimensional mask feature for
each instance using vanilla convolution demands a heavy computing burden. To address this challenge, we propose an instance-aware
convolution. It decomposes this mask representation learning task into two tractable modules as instance-aware weights and instance-
agnostic features. The former is to parametrize convolution for producing mask features corresponding to different instances, improving
mask learning efficiency by avoiding employing several independent convolutions. Meanwhile, the latter serves as mask templates in
a single point. Together, instance-aware mask features are computed by convolving the template with dynamic weights, used for the
mask prediction. Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach,
building upon dense one-stage detectors. Through extensive experiments, we evaluated the effectiveness of our framework built upon
RetinaNet and FCOS. PointINS in ResNet101 backbone achieves a 38.3 mask mean average precision (mAP) on COCO dataset,
outperforming existing point-based methods by a large margin. It gives a comparable performance to the region-based Mask R-CNN
[19] with faster inference.

Index Terms—Instance Segmentation, Single-Point Feature.
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1 INTRODUCTION

Instance segmentation aims to detect all objects from
images at the pixel-level, and involves both object detec-
tion [17], [18], [54], [36], [14] and semantic segmentation [43],
[71], [9]. Instance segmentation is a critical task in computer
vision research community, and plays an indispensable role
in a variety of real-world applications, such as autonomous
vehicles [49], robotics [44], video surveillance [57], etc. Con-
sidering its both academic and industrial values, increasing
the effectiveness and efficiency of instance segmentation is
an important challenge.

In formulation, instance segmentation requires the se-
mantics, identities, and pixel-level locations of objects. Ex-
isting studies [19], [40], [24], [61], [10] demonstrate that
learning a proper mask representation for characterizing ob-
jects’ identities and locations remains a vital and open
problem. Most state-of-the-art (SOTA) instance segmenta-
tion methods [19], [40], [8], [24], [31], [48] construct mask
representations using Region-of-Interests (RoIs) features.
The most representative method is Mask R-CNN [19], a
region-based convolutional neural network that considers
instance masks as refined forms from the corresponding
bounding boxes. Specifically, it extracts RoIs features from
regions containing potential instances [18], [54], [36] and
then maps these features to detect objects’ bounding boxes
and to segment instances’ masks. Although RoI features are
sufficiently expressive to represent regions for final mask
prediction, obtaining RoI features is a complicated process.

To achieve a simple and effective mask representation,
several recent approaches, such as TensorMask [10], Po-
larMask [64] and MEInst [70], directly use single-point
features, also known as points-of-interests (PoIs), to learn
objects’ masks. Based on the assumption that each single-
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Fig. 1. The core module instance-aware convolution of the proposed
PointINS framework in instance segmentation, along with the compar-
ison with the vanilla convolution. By introducing the multiple instance-
aware weights from the same point-of-interest (PoI) feature, we obtain
different instance masks by instance-aware convolution.

point feature corresponds to only one or two potential instances,
these approaches give a mask representation from each PoI
by the vanilla convolution (top row of Fig. 1), building upon
dense one-stage detectors, such as e.g. RetinaNet [37] or
FCOS [60].

Despite their competitive efficiency in instance segmen-
tation, their performance and scalability are restricted by the
adopted assumption and design. In contrast to their original
assumption, one Pol may correspond to multiple instances (i.e.,
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n instances where n = 9 in RetinaNet [37] and YOLO [53]).
it is a more intuitive hypothesis due to the common ag-
gregations and occlusions in the real world. If we switch
to this more general assumption, these methods would
meet the computational bottleneck. Because the assumption
requires them to have around n times larger mask feature
representations by employing a n times larger standard
convolutions for predicting masks, which is empirically
infeasible. A smaller n or a relatively low-dimensional mask
presentation could avoid this issue, but their performance is
compromised as mentioned.

To address the computational feasibility in the assump-
tion that each PoI feature may cover multiple instances,
we study to generate high-dimensional instance-aware mask
representations from PoI features by our proposed instance-
aware convolution. It decomposes the mask learning into
two tractable modules: instance-aware weights and instance-
agnostic features generation (as illustrated in the bottom of
Fig. 1). Specifically, the former module dynamically generates
n convolution weights, predicting n possible mask features.
These dynamic weights are named as instance-aware weights
as they correlate with the predicted instances. Also, the
latter module learns a high-dimensional instance-agnostic
feature, serving as a template for potential mask representa-
tions from a PoI feature. By convolving the instance-agnostic
feature with the instance-aware weights as convolution pa-
rameters, we will get the instance-aware feature, aligning
the template feature to the specific instance. In this way,
it is easy to focus on predicting masks for those positive
instance candidates of PoIs while maintaining a large mask
feature size. Thus, our proposed instance-aware convolution
can solve the computational burden existing in the standard
convolution for PoI-based methods.

Along with the instance-aware convolution, we propose
PointINS, a simple and practical approach to evolve one-
stage detectors for instance segmentation. It provides com-
pelling PoI features for final mask prediction both efficiently
and effectively.

The contributions of this study are three-fold:

• We propose PointINS, a new pointed-based frame-
work for instance segmentation equipped with
the given instance-aware convolution. This module
addresses the learning problem about computing
proper mask representations for several instances
with PoI features, concerning both effectiveness and
efficiency.

• Our proposed method gives the state-of-the-art in-
stance segmentation performance among existing
PoI-based methods. This performance is also compet-
itive compared with the region-based Mask R-CNN.
Under the single-scale 1x training schedule, we ob-
tained 34.5 mask mAP with ResNet101-FPN. Using
data augmentation or with longer training time im-
proved performance consistently to 38.3, which is
comparable to Mask R-CNN (38.3) yet with faster
inference speed (14.9 fps vs. 13.5 fps (frame per
second)).

• Our given PointINS is compatible with the most
dense one-stage detectors (RetinaNet [37] and FCOS
[60]), as its core module instance-aware convolution

is decoupled from box heads. It serves as a general
framework for point-based instance segmentation.

2 RELATED WORK

In this section, we first revisit representative studies on
object detection, as its close relationship to instance seg-
mentation. Then, we describe methods related to instance
segmentation and the core technique of dynamic weights
employed in this study. Wrapped with dynamic weights,
the proposed instance-aware convolution could evolve the
dense one-stage detectors for instance segmentation with
minimal modifications.

2.1 Object Detection
Current convolutional neural network (CNN)-based object
detectors can be categorized into two-stage detectors or one-
stage detectors based on whether they exploit region pro-
posals. Two-stage detectors, such as a series of R-CNN [17],
[18], [54] first select RoIs and then extract the region features
to localize and classify objects. The following algorithms
are proposed to improve the performance of two-stage
detectors, including new architecture designs [6], [14], [7],
[30], [34], context and attention mechanism [3], [55], [42],
[4], [50], multi-scale exploration [58], [46], training strategy,
and loss design [45], [56], [62], [21], feature fusion and en-
hancement [28], [27], [40], better proposal, and balance [59],
[47]. We note that all these methods use the region feature
extraction to detect objects. Due to the accurate alignment
between region locations and features, RoI Align [19] has
become the primary region feature extraction method in
two-stage detectors.

Instead of using cropped region features, one-stage
methods [41], [52], [37], [60] detect boxes only from point
features. Owing to the focal loss [37], one-stage methods
can effectively balance the training loss between positive
and negative samples, thereby leading to satisfactory de-
tection performance. With faster inference speed, one-stage
detectors have become increasingly popular in the computer
vision area. Among numerous one-stage detectors, some
detectors [41], [52], [37], [60] generate bounding boxes from
the single center point, as shown in Fig. 2. For simplicity, we
refer to these center-point based one-stage detectors as dense
one-stage detectors.

Like the box generation of dense one-stage detectors, our
proposed PointINS framework generates instance masks
from a single-point feature. Because both boxes and masks
are different representations of instances, our method can
be built upon these detectors regardless of whether they
are anchor-based or anchor-free. This means that dense
one-stage detectors can be quickly converted into instance
segmentation frameworks by our method with minor mod-
ification.

2.2 Instance Segmentation
Current instance segmentation methods can be roughly
classified into two categories: segmentation-based [39], [2],
[61] and detection-based [19], [40], [8], [24], [31], [48] meth-
ods. Segmentation-based methods usually first predict a
semantic map and then cluster points with similar semantic
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Fig. 2. Illustration of differences between RetinaNet [37] and FCOS [60].
Blue points and boxes represent the center and bound of an object,
respectively, while red points and boxes represent the center and bound
of anchor, respectively. (a) The single point in RetinaNet responds to
several predefined anchors with various sizes and aspect ratios. Thus,
RetinaNet regresses from the anchor box with four offsets. (b) FCOS
has no anchors, and regresses from a center point with four distances.
For simplicity, we refer to this center point as an anchor point.

feature embedding into instance masks. Despite the pre-
sented new problem formulation of instance segmentation,
their expensive clustering produces prevent their real-world
applications. Other types of methods encode the instance
information into each channel of the generated semantic
map. InstanceFCN [12] and FCIS [35] propose predicting
position-sensitive score maps with vanilla fully convolu-
tional networks (FCNs). SOLO [61] directly decodes each
channel of the semantic map into instance masks without
indicating whether the used regions are valid. The efficiency
of these methods is a concern, as they segment numerous
background areas containing no instances but usually cov-
ering a large portion of the images.

Popular instance segmentation frameworks are mainly
detection-based [17], [18], [54], [14], [36], [48]. They generally
predict a series of bounding boxes by two-stage detectors
and then segment masks. Mask R-CNN is an representation
for two-stage instance segmentation framework. Several
methods, including PANet [40], HTC [8], and Mask Scoring
R-CNN [24], refine structure details from different aspects,
and all methods use the RoI-Align [19] to produce region
features. Even RetinaMask [16], Centermask [31] and Em-
bedmask [69], which are built upon one-stage detectors,
such as RetinaNet [37] or FCOS [60], use RoI features to
segment instances.

Instead of using RoI features, Tensormask [10], Polar-
mask [64], and MEInst [70] force a single-point feature to
segment only one or two potential regions for exploring
a more straightforward representation of instance masks.
YOLACT [4] assembles the point responses to several pro-
totypes for final mask prediction. However, the prototypes
are predefined in numbers and involve additional hyper-
parameters. In contrast to these methods, our framework
generates a point-wise instance-agnostic feature, serving
as a template for potential instance masks of generated
bounding boxes.
Single-shot instance segmentation Single-shot instance
segmentation has two popular definitions in the literature.
The first depends on whether the proposed method directly
generates masks without a box indicator, while the second
depends on whether the proposed methods have fewer
information processing steps than the popular Mask R-
CNN.

SOLO [61] and Polarmask [64] belong to the former cat-
egory, while Tensormask [10] and MEInst [70] belong to the
latter category. Without boxes, SOLO and Polarmask have to
segment many invalid regions. Although Tensormask [10]
and MEInst [70] simultaneously generate boxes and masks,
they still require box information to interpolate masks from
fixed sizes to the box size, where the setting is the same
as ours. The main difference between these methods and
ours is our adopted sampling strategy, as described in
subsection 3.3. We sample valid regions to segment masks
in advance, following the process of Mask R-CNN: detection
first, followed by instance segmentation. Our premise is that
focusing on valid regions can reduce the computational cost
of mask generation.

2.3 Dynamic Weight

As a specific strategy of meta-learning [1], [51], [63], weight
prediction [32], [67] aims to generate dynamic parameters
according to different inputs. In other words, the network
parameters are input-dependent. It can significantly im-
prove the flexibility of the used net structure at the cost of
additional computation.

Cai et al. [5] used the predicted parameters of a classifier
to discriminate new categories. These parameters were gen-
erated by the memory of the support set. In object detection,
MetaAnchor [68] is a flexible anchor generator to produce
higher quality boxes. The weight of the last regression layer
is predicted with properties of customized prior anchors.
To balance the instance annotation cost between box and
mask, Hu et al. [22] proposed a semi-supervised method to
segment zero-shot instances by re-weighting box features.
Besides, MetaSR [23] uses a dynamic up-sampling module
to super-resolve a single image with arbitrary scale factors.

In our proposed method, we use dynamic convolution
weights to learn different instance representations from
a single point feature, achieving alignment between an
instance-agnostic feature and positive instances. With in-
stance properties, we generate several unique instance-
aware features for mask prediction while maintaining the
high mask representation capacity. In this way, our method
is effective and robust to one-stage dense detectors even
with numerous anchors tiled at a single point.

3 OUR METHOD

Instance segmentation aims to detect all instances from
images at the pixel level, predicting the location of an object
and the category that it belongs to. In this study, the pro-
posed framework follows the design philosophy of Mask R-
CNN, which splits the process of determining the class and
location of objects into two independent sub-tasks: instance
location regression and class prediction. In Mask R-CNN,
both sub-tasks are predicted with RoI features extracted by
RoI Align. In contrast, this paper studies how to exploit
PoI features to learn mask representation for instances.
Meanwhile, the classification component follows previous
point-based detectors, such as RetinaNet [37] or FCOS [60].

Generally, our proposed PointINS framework has two
components in its structure: a one-stage detector and
instance-aware mask prediction. We use the dense one-stage
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Fig. 3. Overall architecture of proposed PointINS framework. C3, C4 and C5 are the feature maps of the backbone network (e.g., ResNet50). P3

to P7 are the feature pyramid network (FPN) feature maps, as in [36], [37], [60]. For better illustration, each feature map is represented by three
dimensions, including height H, width W and channel without considering the image batch. A is the number of anchors covered by a single point,
with 9 and 1 in RetinaNet and FCOS respectively. C is the number of classes, such as 80 in COCO [38] dataset.

detector here, as it naturally offers pixel-level semantics via
classification and our desired PoI features for mask estima-
tion. More importantly, it generally runs faster than a two-
stage detector. The employed dense one-stage detector has
a classical structure, including a backbone (e.g. ResNet [20]),
a feature pyramid structure (e.g. FPN [36]), and a box gen-
eration head. Our proposed instance-aware mask prediction
module provides simple and effective mask estimation and
is compatible with most dense one-stage detectors whatever
they are anchor-based or anchor-free. It is plugged into the
box generation head of the used detectors, transforming PoI
features into instance masks with minor modifications.

In the remainder of this section, we first briefly revisit
the applied one-stage detectors [37], [60]. Then, we de-
scribe our proposed instance-aware mask prediction mod-
ule and demonstrate its flexibility for both RetinaNet [37]
and FCOS [60] with two variants. Thereafter, we analyze the
advantage of our proposed module in terms of computation
cost, and introduce the final loss function for joint training
with the utilized one-stage detectors. Finally, we discuss the
relationship between our modules and some existing works,
e.g., Tensormask [10].

3.1 Dense One-stage Detectors
The employed detector performs the pixel-level class pre-
diction task and provides PoI features for mask prediction.
Structurally, as illustrated in Fig 3 (not including the mask
component), it contains an FPN backbone and a detection
head, utilizing anchors (predefined sliding windows) for
distinguishing possible multiple instances of varied forms.

The FPN backbone adopts a feature pyramid scheme
to detect objects with different sizes. Specifically, the FPN

backbone extracts feature maps Fs ∈ RHs×Ws×256 of differ-
ent resolutions from the input image I ∈ RH×W×3. Here,
H , W , Hs, Ws denote the height and width of an image
and generated pyramid feature maps, respectively, where
s ∈ {8, 16, 32, 64, 128} is the stride of the pyramid feature
maps compared to the input image size.

The detection head has two branches: the classification
branch and regression branch. Each branch has four convo-
lutional blocks, including the convolutional layer and recti-
fied linear unit (ReLU) operation. These blocks are shared
among all feature-level maps. The classification branch pro-
vides the classification prediction for every pixel of the
feature map with a multi-class binary vector [37] form as
Ps,i,a ∈ {0, 1}C where Ps ∈ RHs×Ws×A×C . A and C
denote the anchor and object category number, respectively;
and i and a denote the pixel location and anchor index,
respectively. Also, the regression branch predicts the offset
Rs ∈ RHs×Ws×A×4 between the anchors and ground truth.
We note that this offset regression is different when using
different dense one-stage detectors. As illustrated in Fig. 2,
RetinaNet [37] tiles multiple preset anchors for each point
of the feature map. Thus, a single-point feature is used to
regress the distances between anchors and nearest objects.
FCOS [60] does not use anchors and uses a single-point
feature to learn the distances between the coordinate of
points and the nearest object. A point in FCOS is similar
to an anchor without restrictions on the area size and
aspect ratios. From this perspective, we can regard FCOS
as an anchor-based detector with only one anchor. Unlike
RetinaNet, FCOS has an additional centerness branch in box
generation head to predict whether the anchor point is in the
center of the ground truth bounding boxes.
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In our method, we regard both the bounding boxes
and pixel-level masks as the representations of instance
locations. Thus, our proposed module utilizes the last fea-
ture map F l

s of the regression branch for further instance
segmentation. Given that RetinaNet and FCOS have differ-
ent regression styles, we explore both of them to generate
instance-aware weight in Section 3.2.2, and show how these
regression styles affect performance empirically in the abla-
tion study in Table 5.

3.2 Instance-aware mask prediction

TABLE 1
The illustration of key hyper-parameters (HP) using RetinaNet as

backbone. A and U are 1 and 7, respectively when using FCOS as
backbone. DCW is short for dynamic convolution weight.

HP Meaning Default
A the number of anchors 9
K the height of square mask feature 16
E the input channel of DCW 9
B the output channel of DCW 256
B the kernel size of DCW 1
U the input size to generate dynamic weight 10

For our proposed instance-aware mask prediction, each
PoI feature F l

s,i ∈ R1×1×256 is extracted from the regression
branch of the one-stage detector. It produces a K ×K class-
agnostic binary mask for every anchor as Ms,i,a ∈ RK×K ,
where Ms ∈ RHs×Ws×A×K×K is the regression result from
the mask feature Fm

s ∈ RHs×Ws×A×K×K×B . K × K and
B denote the mask resolution and mask feature dimension,
respectively.

A main advantage of the proposed instance-aware mask
prediction is that it supports a high-dimensional mask
feature with sufficient characteristics from PoI features,
thereby exhibiting the comparable instance segmentation
performance for those methods using RoI features. For
example, the mask feature size K2B in Mask R-CNN is
50176 = 256 × 142. Our support for high-dimensional
mask representation in PoI form results from our decoupled
design of the mask feature computation. For each point, we
decouple this computation into instance-agnostic features
and instance-aware weights, in which we project the shared
template to the unique mask feature. Specifically, with the
feature maps from the regression branch of the dense detec-
tors, we disentangle the mask feature computation into two
parts: instance-agnostic features Fn

s ∈ RHs×Ws×K2E and
instance-aware weights Fw

s ∈ RHs×Ws×A×(D×E)×B . D is
the weight kernel size, which is described in Section 3.2.3.

As the name suggests, every instance-agnostic feature
point Fn

s,i ∈ RK×K×E indicates a primitive template fea-
ture containing robust information on its receptive field.
Thus, this feature can be responsible for all tiled anchors.
Besides, every instance-aware weight point Fw

s,i ∈ RA×B×D

represents A mask feature embeddings whose embedding
dimension is B × D, derived from the anchors’ property
(such as anchor width/height or aspect ratio) and the re-
gression offset between anchors and target boxes. Using
dynamic convolution as the feature alignment, we transform

the shared template feature to the unique feature of the
potential instance.

Fm
s,i =

⊗
(Fn

s,i, F
w
s,i), (1)

Where
⊗

is the dynamic convolution, in which Fn
s,i is input

and Fw
s,i is the dynamic convolution weight.

In structure, the instance-agnostic features and instance-
aware weights are extracted from two different branches;
however, both stem from the regression branch of the one-
stage detector. They are illustrated in Fig. 4, and their
specific designs are discussed below.

3.2.1 Instance-agnostic Feature Generation
This module aims to provide robust and informative tem-
plate features for the numerous anchors. In our framework,
a single-point feature Fn

s,i is capable of producing several
masks. Thus, the single-point feature should have a suf-
ficiently large receptive field to cover all possible masks,
and contain sufficient semantic information for subsequent
mask prediction. This conjecture was verified in our ablation
study, as illustrated in Table 2.

Let Fn
s,i denote the transformed features from the last

feature map in the regression branch of one-stage detectors.
It is computed by an additional channel up-scaling convolu-
tion and a reshape operation to further aggregate location
information. As such, our point feature is robust enough
to capture the entire instance, even if this point is in the
instance boundary.

Specifically, the aforementioned channel up-scaling op-
eration is a convolution layer with input and output channel
numbers as K2 and K2E, respectively. The convolution
kernel size is

√
E ×

√
E. Since K2E =

√
E ×

√
E × K2,

the output channel increases E times with its
√
E ×

√
E

convolution kernel size. This operation is essential in prac-
tice, as the increased channels allow our tensor to encode
more context information for mask prediction. We note
that this operation can become relatively computationally
cheap, as discussed in Section 3.3. On the other hand, the
reshape operation is used to balance the template spatial
resolution (spatial dimension) and feature representation
(channel dimension). We transform a single-point feature
into a three-dimensional tensor with size (K×K×E). In this
way, we can force each channel of our point feature to have
explicit relative-location information1. For example, the first
nine dimensions of features before the reshape operation
respond to the information of the upper-left-most location
in the template feature.

Note that the K and the input feature dimension Cin
are correlated in this paper. The success of dense one-stage
detectors is built on the premise that each point feature
encodes the desired spatial information into the channel
dimension. With this premise, K2 should be equal/close
to the feature dimension considering performance. Because
K2 � Cin makes the prediction mask resolution go beyond
the capacity of input feature, while K2 � Cin leads to
coarse mask prediction. Regarding this, since the channel
number of input features we used is 256, we suppose the
maximum effective resolution of its leading mask resolution

1. It is similar to R-FCN [14] and FCIS [35], whose channels explicitly
encode relative location scores of instances.
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is 16x16, and use K2 = Cin as the default setting unless
other specified. For E being 9 by default, we share the same
reason as for K that we want to prevent information loss
in this channel up-scaling operator, so we ensure the input
feature dimension equals to output feature dimension by
relating the E with the convolution kernel size.

3.2.2 Instance-aware Weight Generation
This module targets to generate n dynamic convolution
weights from a PoI feature, used for differentiating n pos-
sible instances. Its dynamics prevent from employing n
different conventional convolutions. From this perspective,
it notably reduces the used parameters and their corre-
sponding footprints in the computation when n is relatively
large, e.g., n = 9.

For its design, let Izs,i,a denote the PoI feature with
instance information, we predict its corresponding convo-
lution weight Fw

s,i,a by an FC layer, followed by a ReLU
operation as:

Fw
s,i,a = ReLU(FC(Izs,i,a)), (2)

where the FC layer with input channel as U (10 for Reti-
naNet and 7 for FCOS) and output channel as B × D.
Usually Iz is computed from the PoI feature indicated by
a regressed box. Since we can access both anchor and GT
boxes in training, we can also compute Iz from these two
types of boxes. This may be beneficial to the learning of
instance-aware weights Fw in Eq. 5 by avoiding the error
accumulation from regressed box locations. We study its
training sampling strategies in Section 4.1.1.

Specifically, Izs,i,a = {Ios,i,a, I
q
s,i,a} can be divided into

an anchor indicator Ios,i,a and an instance indicator Iqs,i,a.
Ios,i,a contains information about which specific anchor at
a specific feature level corresponds to the potential mask.
Iqs,i,a has explicit information to characterize the target box,
which could be regressed from an anchor box. These two
indicators are detailed below.

For Ios,i,a, it has four components as follows:

Ios,i,a = {1
s
,
us,i,a
vs,i,a

,
us,i,a
s

,
vs,i,a
s
}, (3)

where s is the stride of the global feature level, and us,i,a
and vs,i,a are the height and width of the anchors, respec-
tively. Therefore, the last three components represent the
aspect ratio and scale of the anchor.

Moreover, Iqs,i,a represents the instance offset from the
original anchors as

Iqs,i,a = {rxs,i,a, r
y
s,i,a, p

l
s,i,a, p

r
s,i,a, p

b
s,i,a, p

t
s,i,a}, (4)

where rxs,i,a and rys,i,a represent the distances between the
centers of the anchor and target box, respectively, and the
other elements represent the distances between the box
location and the center of the corresponding anchor in four
directions. Each component in Iqs,i,a is calculated as

rxs,i,a =
xqs,i,a − xos,i,a

s
, rys,i,a =

yqs,i,a − yos,i,a
s

pls,i,a =
0.5 ∗ vqj

s
− rxs,i,a, prs,i,a =

0.5 ∗ vqj
s

+ rxs,i,a

pts,i,a =
0.5 ∗ uqj

s
− rys,i,a, pbs,i,a =

0.5 ∗ uqj
s

+ rys,i,a

(5)

where xqs,i,a and xos,i,a are the x-axis center location of target
box and anchors, respectively, and are the same as yqs,i,a and
yos,i,a. uqs,i,a and vqs,i,a are the height and width, respectively,
of the target box. The rightmost part of Fig. 4 presents the
geometric illustration of our transformation module.

Note that Izs,i,a only contains Iqs,i,a and 1
s for the anchor-

free detectors. Using FCOS [60] as an example, we regard
the points of each feature level as our anchors, in which
xosia and yosia are the sampled-point locations of the images.
Effectiveness of instance-aware Weights Fig. 5 presents a
visualization of an instance-aware feature by using different
instance-aware weights for the same instance-agnostic fea-
ture. The dynamic weights can produce various instance-
correlated features from the shared instance-agnostic fea-
ture. Moreover, it seems that some part of the person that is
being occluded still shows up in the instance-aware mask
feature in the left third sub-figure. We attribute it to the
employed instance-aware features used for visualization
contain negative samples. These potential negative samples
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Instance-aware Mask Features

A single point

Target Boxes

Fig. 5. Visualization of instance-aware features under the same point feature. With various instance information, instance-aware convolution
generates distinct instance-aware features for subsequent mask prediction.

can segment the most salient part of instances like the head,
arm, or leg. These samples do not consider the criterion that
IoU between the regressed box and anchor box should be
larger than 0.5, which are not used for both training and
inference. For those negative samples, it may be reasonable
to segment the most salient part of instances like the head,
arm, or leg. This case could be solved if we degrade the
sample IoU threshold and thus more highly overlapped
samples could be trained.

3.2.3 Instance-aware convolution
The instance-agnostic feature and instance-aware weights
are fused by pixel-wise convolution, leading to the mask
features. We reshape the instance-aware weight Fw

s,i,a with
the E × B × D dimension to the E × B ×

√
D ×

√
D

dimensions. The reshaped weights can be regarded as con-
volution weight with input channel E, output channel B,
and kernel size

√
D. For ath anchor of the point in location

i, we obtain our instance-aware mask feature Fm
s,i,a by the

dynamic convolution as:

Fm
s,i,a =

⊗
(Fn

s,i, F
w
s,i,a). (6)

where the input of this convolution is the instance agnostic
template Fn

s,i, and it is parametrized by the instance-aware
weights Fw

s,i,a.
In this way, our instance-agnostic feature can be aligned

to the corresponding mask feature with K ×K ×B dimen-
sion. Then via the standard mask head of Mask R-CNN
including four convolution blocks and a deconvolution
block, it is prepared for final class-agnostic mask prediction.
Defining the mask head operation as H, we get the final
mask prediction as:

ŷs,i,a = H(Fm
s,i,a) (7)

3.3 Computational Efficiency Optimization
In our proposed method, instance masks are only generated
from a PoI feature. This generation method allows our
approach to be easily improved for high efficiency. We can
realize this by only sampling positive points and generating
their corresponding instance-agnostic feature and instance-
aware weight in parallel.

At first, a point is defined as positive if the Intersection
of Union (IoU) between the ground truth and one of the
anchors and target boxes is larger than 0.5. In the COCO
dataset, there are 6.43 positive points for each ground
truth instance following this sample principle with only
considering the anchor condition. We randomly sample the
maximum 128 points in training out of more than 22, 000+
points on all feature levels. For inference, only 100 detected
points are used for final mask prediction. Note that the same
point is likely to be sampled multiple times due to several of
its covered anchors and target boxes satisfying our sample
principle.

Thus, the subsequent processing is applied only on
these points, which enables remarkable acceleration. Due
to the channel up-scaling convolution with kernel size 3
in the instance-agnostic feature generation module, it is
only necessary to sample 3 × 3 receptive fields from the
feature map to produce our instance-agnostic features. For
the instance-aware weights, it is only necessary to sample
the corresponding four-dimensional regression feature for
each point. Also, because these points are independent, they
can be processed in parallel for further notable acceleration
and memory usage reduction. Our inference achieves 15.8
FPS with ResNet50 backbone shown in Table 11.

3.4 Loss function

The overall optimization goal considers both instance mask
segmentation and the employed detection as

L = λdet · Ldet + λmask · Lmask, (8)

where Ldet and Lmask denote the detection loss and mask
loss, respectively. The balance weights in λdet and λmask are
set to 1 and 2.

For Ldet, it relies on the one-stage detector used. For
example, RetinaNet consists of Lcls for classification and
Lreg for bounding box regression. FCOS also has an extra
loss Lcen for center-ness. We adopt the default setting for
these detection losses. Lcls and Lcen are the focal loss and
binary cross-entropy loss, respectively. Lreg is the smooth-l1
loss in RetinaNet or the generalized IoU loss in FCOS.
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For Lmask, it is defined as

Lmask =
S∑
s

H×W∑
i

A∑
a

1
objdmask(ŷs,i,a, ys,i,a) (9)

where 1 is the indicator function for positive samples.
ŷ and y denote the prediction and ground-truth vectors,
respectively. The dmask is the weighted binary cross-entropy
loss. The edge of the mask is emphasized by assigning the
larger weight as 4.

As our proposed method predict instance segmentation
at each level of feature pyramid, we apply both detection
loss and mask loss (as given in Eq. 8 and Eq. 9) to different
levels of feature pyramid with equal weight for each level.
This design shares the same idea with the loss for the mask
head of Mask R-CNN, even though the sample Region
of Interest (RoI) features are from different feature levels.
Finally, the PointINS is jointly trained with the detectors it
is built upon.

3.5 Relation to Existing Methods
As the PoI-based methods, e.g., Tensormask [10], we adopt
PoI features to predict instance masks. However, we pro-
vide a new mask representation computation design with
dynamic weights, and our mask representation is more
effective and efficient than the existing works [10], [64], [70]
due to its high capacity, as validated in the performance
comparison presented in Table 12.

We obtain our instance-aware features by instance-aware
convolution. The core of this step is the instance-aware
weights derived from the anchor property and box re-
gression feature. These weights dynamically interpolate the
instance-agnostic feature to the instance-ware mask feature.
Unlike bilinear interpolation used in Tensormask, dynamic
convolution can flexibly align the instance-agnostic feature
to a specific region by learnable weights. Thus, our module
can be easily generalized to dense detectors with multiple
anchors. With the sampling strategy, our module only fo-
cuses on PoIs while maintaining a high mask representation.

In a comparison regarding mask representation, our
mask feature size is 65536 = 256 × 162 from PoI features
with K = 16 and B = 256, outperforming the mask feature
size (only 256) of Polarmask [64] and MEInst [70]. The low-
dimensional mask feature of PolarMask and MEInst results
in reduced performance regardless of how the final mask
representation is modeled. The outlier is Tensormask [10]
with a dynamic mask feature size from 15× 15 to 480× 480
by bilinear interpolation. This usage of bilinear interpolation
depends on the aligned representation and tensor pyramid
structure they proposed; however, this leads to a computa-
tionally intensive feature process.

Moreover, due to the proposed instance-aware convolu-
tion, our framework is robust to the anchor number each
PoI feature corresponds to, making it applicable to the
most types of dense one-stage detectors (both anchor-based
and anchor-free), while existing methods only work in one
specific type.

One-stage instance segmentation We categorize our
method into one-stage framework by following the ritual
in Tensormask [10] and MEInst [70], which are both con-
sidered as one-stage approaches. The definition of one-
stage instance segmentation is controversial. There are two

popular definitions. The first one is whether the proposed
method directly generates masks without any box indicator,
e.g. SOLO [4] and Polarmask [64]. The second is whether
the proposed method has fewer intermediate process steps
compared with the popular Mask R-CNN [19], like Tensor-
mask and MEInst.

4 EXPERIMENTS

4.1 Experiments on COCO Dataset [38]

We compare our method with other state-of-the-art ap-
proaches on the challenging COCO dataset [38]. Following
common practice [19], [36], [40], [24], we train our models
with 115,000 train images and reported results on the 5000
validation images for the ablation study. We also report
results on 20,000 test-dev images for comparison.

Comprehensive ablation studies are conducted on this
dataset with RetinaNet-ResNet50-based PointINS. We fol-
low standard evaluation metrics, namely, average precision
for IoU from 0.5 to 0.95 with a step size of 0.05 (AP ),
AP50, AP75, APS , APM and APL. The last three measure
performance with respect to objects in different scales.

Training Details We train our network using batch size
16 for 12 epochs. The shorter and longer edge sizes of
the images are 800 and 1333. Adam gradient descent with
learning rate as 0.00005 , beta as (0.9, 0.999), and eps as
1e−08 is used as the optimizer. We decay the learning rate
with 0.1 at 8 and 11 epochs respectively. Using stochastic
gradient descent leads to a performance reduction of ap-
proximately 0.3. We initialize our backbone networks with
the pre-trained models on ImageNet. Moreover, we sum all
the losses directly, i.e., λdet = 1, λmask = 2 in Eq. 8.

Inference Details The inference is kept the same as
dense detectors, as we only append one additional mask
prediction to the predicted boxes. Two strategies are used
to obtain the final result on the condition of whether or not
the samples have valid boxes. The former generates all the
masks and then samples a maximum of 100 instances by
box non-maximum suppression (NMS) following Tensor-
mask [10]. The latter uses box NMS to sample a maximum
of 100 boxes and then predict their masks, like MEInst [70].
Compared to the former strategy, the latter does not lead to
performance reduction but avoids the unnecessary compu-
tational overhead for masks.

4.1.1 Ablation Study

All ablation studies are conducted by RetinaNet-based
PointINS with ResNet50. Note that this baseline yields 32.5
AP for the validation split.

Instance-agnostic Feature Generation The representa-
tion of the template tensor is first studied. As illustrated
in Table 2, we explore the influence of different shapes on
the performance of the instance-agnostic feature. For a fair
comparison, we fix the kernel size E of the channel-up
scaling convolution layer to 3. That means, we only change
the output channel of this convolution layer to match the
size of (E,K,K) of Table 2. The default tensor shape is
(9, 16, 16), where 9 is the feature representation and 16 is
the spatial resolution. The performance decreased when
we reduced the number of feature representations. This
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TABLE 2
Ablation study for instance-agnostic feature representation with a fixed

kernel size of 3 of channel up-scaling convolution. The reshaped
tensor’ size is (E,K,K), where E denotes the feature representation
and K denotes the spatial resolution. The Modification column lists the

methods of changing the tensor size and shape by modifying the
channel up-scaling output channel or performing the reshape operation.

(E,K,K) modification AP AP 50 AP 75

(9, 16, 16) default 32.5 51.9 33.8

(1, 16, 16) Decrease Channels 30.4 49.2 31.6
(4, 16, 16) 31.6 50.1 32.4

(36, 8, 8) Reshape Styles 31.8 51.0 32.4
(1, 48, 48) 29.6 48.5 30.1

(16, 16, 16) Increase Channels 32.3 51.7 33.7
(25, 16, 16) 32.5 51.8 33.6

indicates that the feature representation dimension is vital
for encoding information.

Intriguingly, as illustrated in the last two rows, further
increasing the number of feature representation does not
improve the results. This is resulted from our used template
tensor. Regardless of how we transform the information,
the template is reshaped from a single-point feature. In this
ablation study, this single-point feature is generated by a
3 × 3 convolution with an input channel number of 256 by
default. Therefore, the information capacity is 3 × 3 × 256.
The larger output channels of convolution do not further
increase the capacity of valid messages.

This analysis also explains the performance reduction
using different reshape styles. A 3 × 3 kernel encodes the
9 spatial locations in sequence. Therefore, reshaping to a
(9, 16, 16) tensor is more intuitive than the manner in which
each channel represents the relative location response. We
note that this is also the core principle of R-FCN [14] and
FCIS [35]. We regard a tensor with size (1, 16, 16) as the na-
ture representation [10] proposed by the TensorMask study.
It causes a reduction of approximately 3 mean average
precision (mAP).

Table 3 outlines an ablation study using different kernel
size E of channel up-scaling convolution with an output
channel number of 256×E2. We note that this ablation study
is different from that in Table 2, with various kernel size
e.g. 1, 3, 5 or 7. Therefore, there is no capacity change via
this convolution because its input channel number is always
256. We find that using a large kernel size would not lead
to a noticeable performance increase. We conjecture that a
3 × 3 kernel size is sufficient to help the convolution layer
capture the target instance regions, because its input has a
large enough receptive field, which has been already used
for bounding box prediction.

Instance-aware Weight Generation Table 4 summarizes
an ablation study on the input used for generating instance-
aware weight. We first explore the two extreme cases, pre-
sented in the first and last rows of Table 4. Our framework
achieves the best performance when involving all three
parts. In the first row, we directly use the features from
the detection branch instead of our explicit box informa-
tion. The performance reduction indicates that the explicit
information of bounding boxes is more helpful in generating

TABLE 3
Ablation study for instance-agnostic feature representation with various

kernel size of channel up-scaling convolution. The reshaped tensor’
size is (E,K,K), where E denotes the feature representation and K

denotes the spatial resolution.

(E,K,K) AP AP 50 AP 75

(9, 16, 16) 32.5 51.9 33.8

(1, 16, 16) 30.4 46.3 28.7

(25, 16, 16) 32.7 52.0 33.9

(49, 16, 16) 32.7 51.9 33.9

TABLE 4
Ablation study for the input to generate instance-aware weights. The

inputs was split into three parts and explored. Each variable formulation
is simplified by deleting its subscript. For example, Io denotes Iosia. ◦

represents “not used” for this part, whereas X represents used.

Io {rx, ry} {pl, pr, pb, pt} AP AP 50 AP 75

◦ ◦ ◦ 27.9 46.5 28.5

X ◦ ◦ 25.5 44.9 26.1

◦ X ◦ 26.3 45.0 26.6

◦ ◦ X 28.9 47.1 29.3

X X ◦ 30.4 49.1 31.2

◦ X X 31.7 50.6 32.8

X ◦ X 31.3 50.5 32.6

X X X 32.5 51.9 33.8

TABLE 5
Performance comparison with other heuristic designs for Iz . Each

variable formulation is simplified as in Table 4. The first column
describes the design method.

the heuristic Iz design AP AP 50 AP 75

Generating Iz from the feature map 27.9 46.5 28.5

Iq has FPN’s box regression style 31.8 50.3 32.7

Log(Io) 32.2 51.6 33.6

Sigmoid(Iz) 32.3 51.6 33.6

Tanh(Iz) 32.3 51.8 33.4

default Design 32.5 51.9 33.8

instance-aware weights than directly using the features. We
suppose that the features directly generated by the network
are insensitive to the stride of feature maps.

As alternatives to using this piece of information, only
using the Io or {rx, ry} leads to lower AP than directly
using the features of the detection head. This means that
the offset between anchors and boxes is vitally important
in our module. Our design makes it possible to determine
the exact shift to guide fine-tuning the instance-agnostic
template. This assumption is verified in Fig. 5. In our mod-
ule, {pl, pr, pb, pt} play vital roles, and Io (and {rx, ry}) is
peripheral.

Table 5 presents the performance with other heuristic
designs for Iz . The results indicate that the unique region
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TABLE 6
Ablation study for instance-aware weight prediction structure. FC and

ReLU represent the fully connected layer and rectified linear unit,
respectively. The “+” symbol represents cascading two operations in

sequence. 2× means repeating this operation module twice.

structure AP AP 50 AP 75

FC+ReLU 32.5 51.9 33.8

FC 31.7 51.0 33.4

2×(FC+ReLU) 32.6 52.0 33.6

FC+ReLU+FC 32.3 51.7 33.6

TABLE 7
Ablation study for information fusion between the instance-agnostic

template and instance-aware weight. For feature addition and
concatenation, we reshaped both our instance-agnostic feature and

instance-aware weight to 16× 16× 9.

combination AP AP 50 AP 75

addition 31.1 50.9 33.5

concatenation 30.9 50.6 33.6

3×3 convolution 32.5 51.8 33.7

1×1 convolution 32.5 51.9 33.8

indicators are critical to our performance. The design of the
last row is our default setting. For other designs, regardless
of how the hand-crafted features are designed, the final
performance is relatively robust. We suppose this robustness
is produced by our proposed weight prediction structure
(FC Layer). This structure could handle the variations in
our designed features and then produce instance-aware
weights. The performance change among various element-
wise operations, such as Log, Sigmoid, or Tanh, is marginal
for Io or Iq . Using the FPN’s box regression style in Iq

produces an AP lower by approximately 0.7 than using
FCOS’s style. The main difference between these two regres-
sion styles has been illustrated in Fig. 2. The performance
comparison (Table 5) shows that the boundary distance
between anchor and target box (Fig. 2 (b)) is more helpful to
generate offset weight than width or height variance (Fig. 2
(a)).

Table 6 reveals the influence of using different weight
prediction structures. This table indicates that there are no
large differences when a single FC layer is used and not
used. The performance of two layers is only 0.1 higher than
a single layer. The reason is that our input only contains
10 elements. Using more layers does not greatly enhance
information in this setting. Moreover, the ReLU operation
guarantees non-linearity in our module. The reason is that
the generated dynamic weights are used to convolve our
instance-agnostic feature to obtain our target instance-aware
feature. From this point of view, we could regard instance-
agnostic features as templates and dynamic weights as
warp operations. Therefore, some zero values should be
guaranteed in our generated dynamic weights, similar to
the affinity translation matrix.

Instance-aware Convolution Table 7 summarizes an
ablation study on different fusion methods of the instance-

TABLE 8
The ablation study on number of sampled positive points. ”all” means

we sample all the positive points once they satisfy our sample criterion.

Number of Positive Points AP AP 50 AP 75

32 29.6 48.9 31.8

64 31.7 51.1 33.0

128 32.5 51.9 33.8

256 32.4 51.7 33.8

all 32.5 51.9 33.7

agnostic template and instance-aware weight. It can be
seen that directly adding or concatenating them leads to
performance reduction. The reason is that these two fea-
tures come from different sources and thus have a distinct
meaning. Specifically, the instance-agnostic template has
robust semantic information, whereas the instance-aware
weight indicates shifting information between the template
and proposals. As a result, using dynamic convolution is
more appropriate for fusing them by interpolating semantic
information with geometric offsets. With this consideration,
our design is effective in aligning instance-agnostic mask
features given different box information. Increasing the con-
volution kernel size of 1×1 to 3×3 does not further increase
performance, so we choose 1×1 kernel, further reducing the
computation cost of our instance-aware convolution.

Sampling Strategy We explore the effectiveness of the
sampling strategy. As illustrated in Section 3.3 (Computa-
tion Optimization), we randomly sample 128 positive points
by default. The influence about the number of positive
points on the performance is initially ablated, as presented
in Table 8. The mask improves as the number of positive
points increases from 32 to 128. Further increasing the num-
ber of positive points do not improve performance because
of the limited number of positive points in the COCO image.

Table 9 outlines an ablation study on the IoU threshold
for positive points. The second row displays our default
setting with which the IoU between the ground truth and
both its anchors and regressed boxes is greater than 0.5.
The performance dramatically decreases when we reduce
the anchor’s IoU threshold to 0.4. The reason for this is the
sampling strategy adopted in the detection branch. Only
anchors whose IoU are larger than 0.5 are used for box
training. This means that the other anchors could not be
trained; thus, the quality of their generated boxes is not
guaranteed. However, increasing the IoU threshold of 0.5 to
another value like 0.6 or 0.7 reduces the mask performance
due to the network underfitting with fewer positive points.

Due to the heuristic design for our dynamic weight
prediction input Iz , we can sample three types of target
boxes for each point in training, including the anchor,
ground truth, and regressed box. We ablate the influence
of the sampling ratio of these three types, as illustrated
in Table 10. We find using regressed boxes to compute Iz

along with a few both anchor and ground truth boxes (with
both sample ratio 0.05 in training) could make our instance-
aware weight generation module be robust to more extreme
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TABLE 9
The ablation study on the sample criterion for positive points. As

illustrated in section 3.3, a point is defined positive if the Intersection of
Union (IoU) between ground truth and one of the anchors and target

boxes are larger than 0.5.

IoU(Anchor, GT) IoU(Box, GT) AP AP 50 AP 75

0.4 0.5 30.2 50.7 32.7

0.5 0.5 32.5 51.9 33.8

0.5 0.6 32.0 51.2 33.1

0.5 0.7 31.0 50.1 32.2

0.6 0.6 31.7 50.9 32.9

TABLE 10
Ablation study on sample ratio for each target box type. The sample
number is 128. Our default setting is presented in the last row. GT

refers to ground truth.

Anchor GT Regressed Box AP AP 50 AP 75

1.0 0.0 0.0 24.5 42.7 25.3

0.0 1.0 0.0 32.4 51.8 33.9

0.0 0.0 1.0 31.9 51.4 33.4

0.05 0.05 0.9 32.5 51.9 33.8

cases. It achieves the best performance 32.5 compared with
other sampling strategies. The performance of sampling the
anchors’ corresponding ground truth for all points is slightly
lower than our default setting (32.4 vs 32.5). This indicates
that our framework could be trained without the regressed
boxes, and box information is required only to segment
valid regions in inference. The performance of only using
regressed boxes is inferior to our default setting. The reason
for this is that there are no predicted boxes with high quality
at the earlier iteration in training.

Inference Time Table 11 summarizes an ablation study
on inference time with different scales in Nvidia V100 GPU.
Clearly, in the scale of 800 and 12 training epochs, PointINS
gives faster inference speed among all compared methods.
In performance, it exhibits a notable gain compared to other
PoI-based Polarmask (32.5 vs. 29.1) and MEInst (32.5 vs.
30.3), only inferior to RoI-based Mask R-CNN (32.5 vs. 34.4).
We give the speed-accuracy trade-off curve in the Figure 6.

However, when using data augmentation and longer
training time (72 epochs), our method holds its inference
speed advantage and gives competitive performance com-
pared with Mask R-CNN (36.7 vs. 36.8), as shown in Ta-
ble 12. Additionally, when the input scale decreases (e.g.,
400), our model still achieves the practical performance
(25.8) at real-time speed (27.3 fps). It indicates that PointINS
can not only achieve high performance in mask AP, but also
can be applied to real-time applications.

4.1.2 Comparison with State-of-the-Art Methods
Comparison among point-based methods We have imple-
mented our method based on RetinaNet [37] and FCOS [60],
and compare them with three state-of-the-art point-based
instance segmentation frameworks: TensorMask [10], Polar-
Mask [64], and MEInst [70], as described in Table 12. It is

TABLE 11
Ablation study on the inference time with different scales. All

experiments are conducted with ResNet50 backbone.

Scale Method AP AP 50 AP 75 FPS

800 PolarMask [64] 29.1 49.5 29.7 17.2

800 MEInst [70] 30.3 53.0 31.1 17.6

800
PointINS

32.5 51.9 33.8 18.2
600 30.3 49.4 31.3 22.4
400 25.8 44.7 26.4 27.3

800 Mask R-CNN [19] 34.4 55.1 36.7 16.1
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Fig. 6. The speed-accuracy trade-off curve of the state-of-the-art meth-
ods.

clear that our PointINS framework performs the best among
all frameworks. In the following, We present a comparison
with these approaches.

PolarMask [64] uses polar representation as an approx-
imation to the instance mask. With 12 epochs of training,
PolarMask achieves 29.1 mAP with R-50-FPN backbone, and
30.4 mAP with R-101-FPN. With RetinaNet, our PointINS
achieves 32.2 mAP, with an improvement of 3.1 points. The
margin is even larger when we use FCOS as the detection
base, we achieve 33.4 and 34.5 with R-50-FPN and R-101-
FPN backbones, respectively. Note that the polar repre-
sentation is an approximation to the ground truth, which
intrinsically leads to the precision loss. In contrast, our
method uses a pixel-wise mask and does not suffer from this
problem. Our method with ResNet50 with only single-scale
1× training still outperforms the method with ResNet101
under multi-scale 2× training. 1× and 2× training mean
training the network in 12 and 24 epochs.

MEInst [70] encodes a mask into a compact representa-
tion by principal component analysis (PCA). The network
responds to generate feature encodings and finally decodes
them into instance masks. Like the polar representation in
PolarMask, this representation is coarser than the original
ground truth, thus affecting the final segmentation quality.
With the ResNet-101 backbone, MEInst only obtains the
performance of approximately 33.0, which is lower than
ours with only ResnetNet-50 backbone. In particular, large
objects in MEInst lead to poorer performance because the
compact representation misses too many details of large

Authorized licensed use limited to: MIT Libraries. Downloaded on June 12,2021 at 02:33:00 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3085295, IEEE
Transactions on Pattern Analysis and Machine Intelligence

12

TABLE 12
Comparison with current point-based instance segmentation frameworks on test-dev split of COCO dataset. ‘Aug’ refers to data augmentation,
including multi-scale and random crop. X(or ◦) signifies that the network is trained with (or without) data augmentation. ‘Epoch’ indicates the

training time. 12 epochs is a baseline widely used in most previous work [19], [40], [37], [60]. The X-101-FPN-DCN backbone is FPN [36]
backbone with ResNeXt 101 [65] equipped with deformable convolution [15], [73].

Two-stage

method backbone aug epochs AP AP 50 AP 75 APS APM APL

MNC [13] R-101-C4 ◦ 12 24.6 44.3 24.8 4.7 25.9 43.6

FCIS [35] R-101-C5-dilated ◦ 12 29.2 49.5 - 7.1 31.3 50.0

Mask R-CNN [19]
R-50-FPN X 72 36.8 59.2 39.3 17.1 38.7 52.1
R-101-FPN X 72 38.3 61.2 40.8 18.2 40.6 54.1
X-101-FPN ◦ 12 37.1 60.0 39.4 16.9 39.9 53.5

X-101-FPN-DCN X 72 42.5 66.1 46.4 25.0 46.5 58.9

One-stage (Segmentation-based)

method backbone aug epochs AP AP 50 AP 75 APS APM APL

YoLACT [4] R-50-FPN X 45 28.2 46.6 29.2 9.2 29.3 44.8
R-101-FPN X 45 31.2 50.6 32.8 12.1 33.3 47.1

SOLO [4] R-101-FPN X 36 37.8 59.5 40.4 16.4 40.6 54.2

EmbedMask [69] R-101-FPN X 36 37.7 59.1 40.3 17.9 40.4 53.0

One-stage (Point-based)

method backbone aug epochs AP AP 50 AP 75 APS APM APL

ExtremeNet [72] Hourglass-101 X 100 18.9 44.5 13.7 10.4 20.4 28.3

TensorMask [10] R-50-FPN X 72 35.4 57.2 37.3 16.3 36.8 49.3
R-101-FPN X 72 37.1 59.3 39.4 17.4 39.1 51.6

PolarMask [64]

R-50-FPN ◦ 12 29.1 49.5 29.7 12.6 31.8 42.3
R-101-FPN ◦ 12 30.4 51.1 31.2 13.5 33.5 43.9
R-101-FPN X 24 32.1 53.7 33.1 14.7 33.8 45.3

X-101-FPN-DCN X 24 36.2 59.4 37.7 17.8 37.7 51.5

MEInst [70]

R-101-FPN ◦ 12 33.0 56.4 34.0 15.2 35.3 46.3
R-101-FPN X 36 33.9 56.2 35.4 19.8 36.1 42.3

X-101-FPN-DCN X 36 38.2 61.7 40.4 22.6 40.0 49.3

RetinaNet + ours

R-50-FPN ◦ 12 32.2 51.6 33.4 13.4 34.4 48.4
R-101-FPN ◦ 12 33.5 53.6 34.1 14.2 35.3 49.0
R-50-FPN X 72 36.2 58.1 37.8 16.5 37.7 50.5
R-101-FPN X 72 37.9 60.1 39.7 17.8 40.1 52.1

FCOS + ours

R-50-FPN ◦ 12 33.4 53.7 35.2 14.8 36.3 48.8
R-101-FPN ◦ 12 34.5 54.5 36.6 15.4 37.0 49.4
R-50-FPN X 72 36.7 58.2 38.1 16.8 38.0 50.9
R-101-FPN X 72 38.3 60.3 40.0 18.1 40.3 52.4

X-101-FPN-DCN X 72 42.0 63.7 44.3 21.0 43.5 55.9

objects.

Compared to the Tensormask [10], we achieve an im-
provement of 0.8 (37.1 → 37.9) and 1.2 (37.1 → 38.3) with
RatinaNet and FCOS, respectively. The cause of our success
is twofold. First, the instance-agnostic feature we use is
more informative and robust than the aligned representation
proposed by Tensormask. Second, we propose the instance-
aware module, which allows our framework to capture
accurate masks for the predicted instances.

Note that by applying data augmentation and training
for a longer time, our performance further improves sig-
nificantly. By training for as long as 72 epochs and using
data augmentation, our model with RetinaNet achieves
37.9 mAP with R-101-FPN backbone, while with FCOS it
achieves 38.3 mAP. For a fair comparison with the previous

winner, TensorMask [10], we use the same hyperparameter
setting.

Comparison with State-of-the-Arts Methods Table 12
also demonstrates that PointINS can obtain the compara-
ble performance to Mask R-CNN [19] and SOLO [61]) by
only using a single-point feature. This demonstrates that
PointINS is a promising method that does not involve RoI
feature extraction, and the point feature can be further
improved with more elaborate designs.

4.1.3 Correlation to object detection.

Table 13 presents the associated detection performance
of Tensormask and our PointINS framework on COCO
test-dev set. Initially, the mask performance (36.2) of our
RetinaNet-based PointINS is higher than that (35.4) of Ten-
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TABLE 13
The associated detection performance of the Tensormask and PointINS
with ResNet50 backbone. All the experiemnts are conducted with data

augmentation and 6× training scheme.

method backbone type AP AP 50 AP 75

TensorMask R-50-FPN box 41.6 61.0 45.1
mask 35.4 57.2 37.3

RetinaNet + ours R-50-FPN box 41.8 61.2 45.3
mask 36.2 58.1 37.8

FCOS + ours R-50-FPN box 42.3 61.7 45.9
mask 36.7 58.2 38.1

TABLE 14
The comparison between RetinaMask and RetinaNet ours with aligning

all the training details including sample way and loss function. The
APB and APM are the mAP of the bounding box and instance mask

respectively.

method APB APM FPS

RetinaMask [16] 36.7 31.9 15.9

RetinaNet+Ours 36.7 32.2 18.2

sormask with approximately the same box quality (41.6
vs 41.8). This shows that the mask improvement of the
pointINS results from our designed modules, including
instance-agnostic feature generation and instance-aware
convolution. Both help our model capture more robust
and aligned features for each specific box. Furthermore,
the mask quality obtains consistent improvement with an
effective one-stage detector such as FCOS.

4.1.4 Comparison to RetinaMask
Given the reason that the difference between Retina-
Mask [16] and RetinaNet [37] + Ours is the mask feature
extracted from Region-of-Interest (RoI) or Point-of-Interest
(PoI). We compared them in the Table 14 with aligning all
the training details including sample way and loss function.
We could see that our method is faster than RetinaMask
with comparable or better performance. Our efficiency is
brought by that we do not explicitly crop the RoI features
with time-consuming RoI Alignment. Instead, ours use dy-
namic weight and instance-agnostic feature to produce final
instance-aware features. This process is both effective and
efficient by being optimized in parallel.

4.1.5 Visualization
Figure 7 shows a visualization of our predicted instances.
Notably, our approach can easily detect small objects, as our
employed dense one-stage detector excels at this. This is
also verified in Table 12 with better AP s than SOLO [61].
For large objects, the boundary is slightly worse than that
of small ones. This signifies that a single-point feature in
our PointINS compressed detailed information for large
regions due to the pyramid features used in object detection
and instance segmentation frameworks. Like RetinaNet and
FCOS, large objects are detected with P6 or P7 features,
which are highly abstract to estimate the location of large ob-
jects. However, they are not suitable for pixel-level instance

segmentation because they lose details by downsampling.
Longer training time and data augmentation can relieve this
problem, as illustrated in Table 12.

4.2 Experiments on Cityscapes
Dataset and Metrics The Cityscapes [11] dataset contains
street scenes captured by car-mounted cameras. There are
2,975 training, 500 validation, and 1,525 testing images
with fine annotations. Here, we report our results on both
validation and test subset. Eight semantic classes are anno-
tated with instance masks, and each image had a size of
1024× 2048. We evaluate results based on AP and AP50.

Hyper-parameters We use images with shorter edges
randomly sampled from {800, 1024} for training, and im-
ages with a shorter edge length of 1024 for inference. We
train our model with a learning rate of 0.0005 for 18k
iterations and with a rate of 0.00005 for other 6k iterations.
Eight images (1 image per GPU) are in one image batch.

Results Table 15 presents the results of our PointINS
framework with the FCOS-Res50 backbone. PointINS out-
performs RoI and segmentation-based methods with a sim-
ple yet efficient structure.

5 CONCLUSION

In this study, we introduce PointINS to convert current
dense one-stage detectors for instance segmentation by a
single-point feature. The core module is instance-aware
convolution, ensuring that single-point features are suffi-
ciently expressive for instance masks. This module decom-
poses a single point feature into two tractable modules: an
instance-agnostic feature and instance-aware weight gener-
ation modules. This design ensures that high-dimensional
instance-aware mask features of several positive points are
aligned (by convolving the template with dynamic weights)
and are then used for mask prediction. The experiments
show that the proposed framework achieves competitive
accuracy and speed among point-based frameworks. Fur-
thermore, the proposed framework is comparable to the
popular Mask R-CNN framework.

In the future, we will explore new dynamic weight
generation methods to make a single-point feature robust. In
addition, we will study how to apply this concept to other
instance-based downstream tasks like panoptic segmenta-
tion [26], [66], [33] or visual relationships prediction [29] or
dense captioning [25].
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