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Text-Guided Human Image Manipulation via
Image-Text Shared Space

Xiaogang Xu, Ying-Cong Chen, Xin Tao, and Jiaya Jia, Fellow, IEEE

Abstract—Text is a new way to guide human image manipulation. Albeit natural and flexible, text usually suffers from inaccuracy in
spatial description, ambiguity in the description of appearance, and incompleteness. We in this paper address these issues. To
overcome inaccuracy, we use structured information (e.g., poses) to help identify correct location to manipulate, by disentangling the
control of appearance and spatial structure. Moreover, we learn the image-text shared space with derived disentanglement to improve
accuracy and quality of manipulation, by separating relevant and irrelevant editing directions for the textual instructions in this space.
Our model generates a series of manipulation results by moving source images in this space with different degrees of editing strength.
Thus, to reduce the ambiguity in text, our model generates sequential output for manual selection. In addition, we propose an efficient
pseudo-label loss to enhance editing performance when the text is incomplete. We evaluate our method on various datasets and show
its precision and interactiveness to manipulate human images.

Index Terms—Human Image Manipulation, Adversarial Generative Networks, Image and Text.
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1 INTRODUCTION

POPULARITY of social networks stimulates online photo
sharing, which requires development of important

photo editing tools. In this paper, we aim to enable users
to customize their photos in a natural and comfortable
way by seeking an intelligent model that can communicate
with users by natural language. This line of development is
termed as “text-guided image manipulation”.

Existing text-guided image manipulation methods [1],
[2], [3], [4], [5], [6], [7] formulate the task as a conditional
image generation process. A text encoder is employed to
extract semantic features of input text, and an image encoder
obtains the deep representation of images. Then a generative
adversarial network [8] is applied to synthesize images
based on the text and image features. Ideally, generated
images reflect visual change according to the given textual
descriptions.

There are still a few critical problems that need to
be addressed. They include improvement accuracy of ma-
nipulation, reducing ambiguity of natural language, and
using possibly incomplete description provided by users.
To elaborate, first, it is difficult to locate correct regions to
manipulate through text, since text lacks precise spatial or
structural information in general. We provide an example
in Fig. 1. When the “yellow shirt” is mentioned in the
sentence, it means only shirt color is to change while other
places should keep untouched. The system needs to identify
diverse parts correctly.

Second, natural language is ambiguous. It is hard to
specify an exact degree for manipulating appearance with

• Xiaogang Xu and Jiaya Jia are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong (CUHK).
E-mail: xgxu@cse.cuhk.edu.hk, leojia@cse.cuhk.edu.hk

• Ying-Cong Chen is with the Computer Science and Artifical Intelligence
Lab, Massachusetts Institute of Technology (MIT).
E-mail: yingcong.ian.chen@gmail.com

• Xin Tao is with Kuaishou Technology. E-mail: jiangsutx@gmail.com
• Corresponding Author: Ying-Cong Chen.

S: The man wears a (white → yellow) shirt and black (shorts → pants)

I P sequential results by editing strength
(a) An example of human body manipulation.

S: This woman has (straight → wavy) and (brown → blond) hair

I P sequential results by editing strength
(b) An example of face Manipulation.

Fig. 1. Our framework allows users to manipulate appearance of image
I with textual input S, where strength is controllable. Moreover, spatial
information is editable by adjusting pose input P .

only text. For example, in Fig. 1(a), “yellow” can be dark
or light – it is unknown which is preferred by users based
solely on language. Thus, instead of outputting a single
edited image, a more desired way is to generate a series of
images for users to choose. Third, users may face difficulties
in giving full description. The task is therefore to complete
it based on common sense.

In this paper, we address these major issues by propos-
ing a flexible framework. To accurately locate regions to
edit, our approach extracts structural information (e.g., face
landmark and poses for pedestrians) from original images
and uses it to disentangle appearance and spatial. It has
been proved that embedding multimodal inputs into a
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Fig. 2. Our framework is composed of manipulation module GM, image-based generation module GI and text-based generation module GT . a)
Image-based generation module GI(I, P ) adopts the pose encoder ES to obtain spatial feature FS from P and image feature FI with the image
encoder EI . It uses AdaIN-based decoder D to complete generation. b) Manipulation module GM(SN , I, P ) is built upon GI(I, P ). Text input SN

is embedded into the same feature space with image feature through text encoder ET . The attribute vector V is computed from the comparison
between text and image feature in shared space through A. V updates FI to F̃I , which generates output through D with FS . The manipulation
strength is controllable by adjusting weight α of V. c) Text-based generation module GT (S, P ) gives output based on S and P to help the training
of A, where S describes I. OI , OM and OT are output from these three modules respectively.

shared feature space can benefit several computer vision
tasks [9], [10], and we in this paper propose to learn image-
text shared space, which allows manipulating images with
“attribute vectors” defined by the text descriptions. Similar
motivation is the semantic latent space embedding [7], [11],
[12], [13], [14], which allows manipulating image features
with arithmetic operations.

Besides, we adjust manipulation strength by setting
varying moving distances in latent space. Our framework
allows for outputting a series of generation results for each
source image. This gives users high freedom to choose
satisfying results and reduce ambiguity of textual instruc-
tion. As illustrated in Fig. 1, when taking the human body
(pedestrian) and face synthesis as examples, our method
generates a series of results. In addition, our pseudo-label
loss improves the manipulation performance when the text
input is incomplete.

Extensive experiments are conducted on CUHK-PEDES
[15] and CelebA [16] to demonstrate effectiveness and gen-
erality of our framework. Compared with state-of-the-art
approaches, our framework achieves text-guided human
image manipulation with high accuracy and quality. A
video is provided to demonstrate that our approach gen-
erates results in a user-friendly way.

2 RELATED WORK

There have been a few methods using text to guide image
manipulation, which can be divided into two main cate-
gories according to whether they adopt deep generative
models or not. The methods not using deep generative mod-
els normally adopt rule-based strategies instead [17], [18].
These rule-based methods would pre-define the language
templates to parse the editing request, and then call the off-
the-shelf operations. However, such strategies are limited by
capacities of the corresponding language templates.

Recent work designs frameworks with diverse editing
targets, by adopting deep generative models [1], [2], [3], [4],
[6], [19], [20], [21], [22], [23], [24] – especially Adversarial

Generative Network (GAN) [8]. Chen et al. [6] colorized
source images conditioned on the description of the input
language, and Cheng et al. [21] completed the same task
allowing for sequence generation. Wang et al. [19] modified
the brightness of photos with textual instruction. Zhu et
al. [4] and Gunel et al. [20] let the system learn to manipulate
fashion images via textual descriptions. Nam et al. [1] and
Dong et al. [2] both illustrated the effectiveness of their
frameworks by manipulating the appearance of birds and
flowers. Li et al. [3] proposed a framework with hierarchical
structure and attention mechanism for general purposes.

All these methods only allow users to edit attributes
of appearance instead of spatial information. Unlike all
previous work, our framework edits images not only with
appearance change but also by adjusting object layout (e.g.,
poses in pedestrian).

Albeit various frameworks, existing approaches imple-
ment conditional text modeling by simply concatenating
text features with image ones [1], [2], [3], [4], [19], [20], which
do not learn matching between textual descriptions and vi-
sual components. Our method is advantageous by learning
image-text space, where any image editing operations can
be realized by shifting image features towards the direction
of attributes changes defined by textual instruction.

Text-to-image generation [25], [26], [27], [28], [29], [30] is
another task to synthesize images with input language as a
condition. Such approaches aim to generate an image whose
content is consistent with the description of given natural
language. Existing approaches usually achieve consistency
by adversarial training with text as condition [31], [32], or
adopting reconstruction loss [29].

3 OUR FRAMEWORK

Our framework achieves text-guided human image ma-
nipulation in a general way, which involves both edit for
attribute of appearance (e.g., color) and spatial editing (e.g.,
pose and expression modification). The former is achieved
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Fig. 3. Illustration of manipulation in image-text latent space. Both text and image are mapped to the same space, while they are not aligned
in “direction for irrelevant attributes” since text may only cover part of concerned attributes. Our attribute vector is constructed by projecting the
difference onto the direction computed by A. It thus modifies attributes in the image without involving irrelevant attributes. Editing strength can be
controlled for a sequence of output.

by textual guidance, and the latter uses structural input, e.g.,
landmarks that determines the structure of image content.

Here, structural input helps in three aspects. First, struc-
tural input helps locate correct parts to manipulate, since
textual instruction normally corresponds to specific parts of
structure. For example, “shirt” normally locates in the upper
part of pose for pedestrian. Such guidance is achieved by
disentangling the control of appearance and spatial struc-
ture with our designed AdaIN-based structure [33], [34],
[35], [36], [37].

Besides, we obtain image-text shared space with this
disentanglement. It yields superior effect for editing appear-
ance, and solves ambiguity of text. Finally, structural input
is easy to estimate, and allows precise control of spatial
structure. Compared with manipulating spatial structure
through post-processing [38], [39], [40], [41], ours controls
appearance and spatial structure simultaneously with real-
time speed.

Our framework is composed of two parts as shown in
Fig. 2, i.e., two generation modules (image-based gener-
ation module GI and text-based generation module GT )
and a manipulation module (GM). The generation part
synthesizes target images based on source image input,
textual description, and structure information. Especially,
the shared space for image and text is learned by these two
generation modules.

The manipulation module guides generation with struc-
tural information and outputs continuous sequences of syn-
thesized results by varying editing strength. We take skele-
tons and landmarks as examples of structure information
for pedestrian and face synthesis in this paper. Our method,
in fact, can generalize to more types of structural input.

3.1 Manipulation Module

Since the pose input P provides accurate structural infor-
mation [38], [42], [43], it remedies the spatial inaccuracy of
text for manipulation. Information P is initially obtained by
applying the pose inference network to either image or text
[5], [44], [45], and is then adjusted by users. In our work,
we extract poses of pedestrians using OpenPose [44], and
obtain the face orientation using Dlib [45].

Understanding textual instruction and manipulating the
image accordingly is not trivial. As shown in Fig. 3, our
main idea is to learn image-text shared space, where any
manipulation operations for appearance can be done by
moving images in the latent space along specific attribute
vectors extracted from the textual instruction, like transla-
tional embedding [7], [11]. Thus, we modify the image along
the instructional direction. This operation is advantageous
since the manipulation strength is controllable, which al-
lows to generate a sequence of output from the same input.
Users pick the one they like to refine details. This solution
resolves the ambiguity for textual instruction.

3.1.1 Manipulation Procedure OM = GM(S, I, P )

To manipulate image I with the text S and the structure
information P , we obtain image feature FI from I by the
image encoder EI and the spatial feature FS from P by the
spatial encoder ES . To acquire text feature FT from S, we
set a text encoder ET with LSTM structure [46]. We average
the hidden feature of each token in S as the output feature
of LSTM, denoted as FT . Note that FI and FT are both
vectors with the same shape, which are utilized to compute
identical category of AdaIN parameters. They locate in the
same feature space.

The manipulation is achieved with the attribute vector V
generated from the attribute-vector generator A as

VA = A(FI ⊕ FT ), F̃I = FI + α× VA,

FS = ES(P ), OM = D(FS ,M(F̃I)),
(1)

where ⊕ denotes channel concatenation, D is the AdaIN-
based decoder, M is used to compute the AdaIN parameter
with MLP (multilayer perceptron) structure, and α is the
weight for attribute vector. We denote this manipulation
procedure as OM = GM(S, I, P ).

The attribute vector V is derived from projection of the
difference between image and text features in the shared
space, on “direction of attributes to manipulate” obtained by
A. It enables us to edit image feature without changing ir-
relevant attributes that are not described in the text. Further,
adjusting α (i.e., manipulation strength) helps synthesize
sequential output for selection, to remedy imprecise textual
description.
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Fig. 4. The pseudo-label loss is designed to train manipulation module GM(S, I, P ), and improve performance when text input is incomplete and
negative. For the text whose description is not consistent with content of I (like SN ), we use our trained text-to-image generation module GT (S, P )
to form pseudo labels to guide training.

3.1.2 Training the Manipulation Module
During training, for each image in the dataset, we have
a textual description of S that fully describes its content
and all concerned attributes. However, during testing, the
textual description provided by users may only cover part
of attributes. To address this problem, we propose a text
augmentation approach that generates incomplete and nega-
tive textual description, aiming to cover more possibilities
during practical use. Here incomplete text stands for the
textual description that does not adequately describe all
concerned attributes of the corresponding image (like SP

and SN in Fig. 4), and negative text refers to the textual
description that does not match the corresponding image
(like SN and S∗

N in Fig. 4).
Textual description generally describes the properties

of specific attributes. For example, S in Fig. 4(a) provides
descriptions about the color of shirt and pants. In these
descriptions, the attribute name is usually a noun, and its
corresponding properties are usually adjective.

Motivated by this observation, we generate incomplete
text by trimming a passage of description on the location of
a noun and generate negative text by randomly changing
the adjective. We illustrate the procedure in Fig. 4(b) and
(c). Specifically, we trim the full sentence S after the noun
“shirt”, and obtain an incomplete sentence SP . Then the
adjective “gray” is changed to “blue” to produce a negative
sentence SN . By randomly trimming the full descriptions
and modifying adjective words, we obtain numerous incom-
plete and negative descriptions, covering most situations in
practical use.

The loss of the manipulation module is composed of
two parts, guiding this module to handle positive/negative
textual descriptions respectively.

When inputted text is positive (that is, its content is
consistent with the image), GM should generate an image
that is identical with the input. This constraint can be
modeled with a reconstruction loss. In our implementation,
we use both pixel- and feature-level [12], [47], [48], [49]
reconstruction loss, which is defined as

LMpos =

5∑
i=0

E(||Φi(GM(Spos, I, P ))− Φi(I)||), (2)

where E is the operation to compute mean value, Spos

denotes positive textual descriptions, either complete or
not, and Φ0(·) is the raw pixel space. Φ1(·) to Φ5(·) are
feature spaces defined by the ReLU1 2, ReLU2 2, ReLU3 3,
ReLU4 3, ReLU5 3 layers of an ImageNet-pretrained VGG-
16 network [50].

When the input text is negative (that is, the content of
text is different from the input image), the manipulation
module is expected to modify the image accordingly. In this
case, there is no ground truth to train the model. Fortunately,
the generation module, which will be described in the next
section, can be used for constructing a pseudo ground truth
for training.

Specifically, the generation module GT (S, P ) takes tex-
tual description and a pose feature as input and generates
an image whose content is consistent with the textual de-
scription S. The pose input guarantees that pseudo labels
have correct spatial structures. So for negative text, it is
expected that the output from the manipulation module is
consistent with that of the generation module once the text
input is rational. This leads to pseudo-label loss, which can be
formulated as

LMneg =

5∑
i=0

E(||Φi(GM(SN , I, P ))− Φi(GT (S∗
N , P ))||), (3)

where SN denotes the incomplete and negative text, and
S∗
N is the complete counterpart, as illustrated in Fig. 4(d).

Note that we cannot use the incomplete text SN in the
generation module GT , as it does not describe all concerned
attributes and would instead generate image that is vastly
different from I . Moreover, the appearance of GT (S

∗
N , P )

does not need to be totally matched with the appearance
of GM(SN , I, P ), since we can further adjust details of
manipulation results by controlling α.

3.2 Generation Module

There are two generation modules (image-based genera-
tion module GI(I, P ) and text-based generation module
GT (S, P )), which learn image-text shared space to help
the training of manipulation module. Note GI(I, P ) takes
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image I and pose P as input, and GT (S, P ) takes text S
and pose P as input.

3.2.1 Image-based Generation Module GI(I, P )

This module aims to generate image OI with feature of
image I and pose input P . OI has structure guided by pose
P and appearance as I . As shown in Fig. 2, to output OI , we
obtain the image feature FI and the spatial feature FS from
I and P respectively. Then we use FI to compute the AdaIN
parameter AI = M(FI) to generate OI = D(FS , AI),
where D is the AdaIN decoder in Eq. (1).

The generator in this module consists of the image
encoder EI , the spatial encoder ES , the network to compute
AdaIN paramter M and the decoder D.

We use training pair as (I, P ) where P is the pose of I ,
and set reconstruction loss as the distance between OI and
I in both pixe- and feature-level as

LIrec =

5∑
i=0

E(||Φi(OI)− Φi(I)||). (4)

Meanwhile, we use GAN loss [8] to enhance the quality
of generation, by setting a discriminator D whose input is
the concatenation of real/fake images and pose input. The
loss for the generator and the discriminator is designed as
LSGAN [51] as

LGANDR
=EI∈pR((D(I ⊕ P )− 1)2),

LGANDI
=EI∈pR((D(GI(I, P )⊕ P )− 0)2),

LGANGI
=EI∈pR((D(GI(I, P )⊕ P )− 1)2),

(5)

where I ∈ pR is the distribution of real images, P is the
pose of image I . Loss term LGAND∗

is for the discriminator
while LGANG∗

is for the generator. We adopt the feature
match loss [52], [53], [54], [55] as an auxiliary part of GAN
loss. Specifically, we obtain features from D for fake and real
images, and compute their distance as

LFI = E(∥F(OI)−F(I)∥), (6)

where F(X) is the feature obtained from the layer before
final output in the discriminator for real/fake image X .

3.2.2 Text-based Generation Module GT (S, P )

This module generates image OT based on the sentence
input S and the pose input P . The output of this module is
utilized to provide the pseudo ground truth for the training
of the manipulation module. Therefore, we ensure that OT

has the required pose as P by adopting the AdaIN structure
for this module.

We first obtain text feature FT from text encoder, and
then compute AdaIN parameters as AT = M(FT ). Com-
bined with spatial feature FS , OT is obtained as OT =
D(FS , AT ). It is noted that the AdaIN decoder here is the
same as that in the module GI(I, P ). Parameters are shared
so that the feature derived from EI and ET share the same
space for final synthesis.

Therefore, the generator in this module consists of ET ,
ES , M and D.

Besides, the same loss from Eqs. (4)-(6) is adopted in this
module and the reconstruction loss is written as

LTrec =

5∑
i=0

E(||Φi(OT )− Φi(I)||). (7)

Meanwhile, similar to Eqs. (5) and (6), we use the GAN loss
of

LGANDT
=ES∈pT ((D(GT (S, P )⊕ P )− 0)2),

LGANGT
=ES∈pT ((D(GT (S, P )⊕ P )− 1)2),

(8)

LFT =E(∥F(OT )−F(I)∥), (9)

where S is the consistent text input for (I, P ) pair in Eq. (5),
which contains sufficient description for the whole content
of I . S ∈ pT is its distribution. Other notations are the same
as Eqs. (5) and (6).

Besides, to let the text and image feature, which contain
the same information, approach each other in the shared fea-
ture space, we set text-and-image similarity loss proposed in
[31]. This loss is computed from word- and sentence-level,
which are denoted as LWsim and LSsim respectively.

3.3 Overall Loss Term
In summary of our method, the overall loss terms for the
image encoder EI , text encoder ET , spatial encoder ES , net-
work to compute AdaIN paramter M, decoder D, attribute-
vector generator A, and discriminator D are defined as

LEI ,ET = LRec + LAug + LAdv + LMat + LSim,

LES ,M,D = LRec + LAug + LAdv + LMat,

LD = LGANDR
+ LGANDT

+ LGANDI
,

LA = LAug,

(10)

where
LAug =λ1(LMpos + LMneg ),

LRec =λ2LIrec + λ3LTrec ,

LAdv =λ4(LGANGI
+ LGANGT

),

LMat =λ5(LFI + LFT ),

LSim =λ6(LWsim + LSsim),

(11)

and λ1-λ6 refer to loss weights. All loss terms, except for
LMpos

and LMneg
, are computed on training tuple (S, I, P )

where the content of text S is complete and positive with
regard to the image I , and P is the pose of I .

3.4 Network Details
In experiments, the network configuration for each com-
ponent in our framework is summarized as the following.
1) The image encoder EI consists of several convolution
layers and one global average pooling layer, as shown in
Fig. 5(a). Here, “Conv, 7 × 7, 3 × 64, 1, ReLU” means that
this convolution layer adopts kernel size of 7×7 with stride
size of 1, and has 3 input feature channels and 64 output
feature channels. An activation function ReLU is applied
to the output of this convolution layer. Meaning of other
convolution layers can be interpreted in the same way.

2) Spatial encoder ES consists of four convolution layers,
and two convolutional residual blocks [56] with instance
normalization (IN ), as shown in Fig. 5(b). 3) The AdaIN-
based decoder D consists of two convolutional residual
blocks with AdaIN as the normalization operation, and sev-
eral convolution layers with AdaIN, as shown in Fig. 5(c).
4) The network to compute AdaIN parameters M, and the
attribute vector generator A are both implemented as MLP,
as shown in Fig. 5(d)&(e) respectively, where “FC,X × Y”
means the fully connected layer with X input feature chan-
nels and Y output channels.
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𝐶𝑜𝑛𝑣, 4×4,512×1024, 2, 𝑅𝑒𝐿𝑈

Global average pooling

𝐶𝑜𝑛𝑣,1×1, 1024×256, 1

Input pose: 𝑃

𝐶𝑜𝑛𝑣, 7×7,3×64, 1, 𝑅𝑒𝐿𝑈

𝐶𝑜𝑛𝑣, 4×4,64×128, 2, 𝑅𝑒𝐿𝑈

𝐶𝑜𝑛𝑣, 4×4,128×256, 2, 𝑅𝑒𝐿𝑈

𝐶𝑜𝑛𝑣, 4×4,256×512, 2, 𝑅𝑒𝐿𝑈

𝐶𝑜𝑛𝑣,3×3, 512×512, 1

𝐼𝑁,𝑅𝑒𝐿𝑈

Image feature: 𝐹8 Spatial feature: 𝐹9

Input spatial feature: 𝐹9

𝐶𝑜𝑛𝑣,3×3, 512×512, 1

AdaIN, 𝑅𝑒𝐿𝑈

𝐶𝑜𝑛𝑣,3×3, 512×512, 1

Output:	𝑂8 or 𝑂< or 𝑂=

𝐶𝑜𝑛𝑣,3×3, 512×512, 1

𝐼𝑁,𝑅𝑒𝐿𝑈

+

𝐶𝑜𝑛𝑣,3×3, 512×512, 1

𝐼𝑁,𝑅𝑒𝐿𝑈

𝐶𝑜𝑛𝑣,3×3, 512×512, 1

𝐼𝑁,𝑅𝑒𝐿𝑈

+

AdaIN,	𝑅𝑒𝐿𝑈

+

𝐶𝑜𝑛𝑣,3×3, 512×512, 1

AdaIN, 𝑅𝑒𝐿𝑈

𝐶𝑜𝑛𝑣,3×3, 512×512, 1

AdaIN,	𝑅𝑒𝐿𝑈

+

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒	×2

𝐶𝑜𝑛𝑣,5×5, 512×256, 1

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒	×2

𝐶𝑜𝑛𝑣,5×5, 256×128, 1

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒	×2

𝐶𝑜𝑛𝑣,5×5, 128×64, 1

𝐶𝑜𝑛𝑣,7×7, 64×3, 1,𝑇𝑎𝑛ℎ

AdaIN, 𝑅𝑒𝐿𝑈

AdaIN, 𝑅𝑒𝐿𝑈

AdaIN, 𝑅𝑒𝐿𝑈

Image feature 𝐹8 or Text feature (𝐹<) or Edited image feature (𝐹8G)

Predicted “parameters of affine transformation” in AdaIN

ℳ

𝐹𝐶,256×1024

𝐹𝐶,1024×1024

𝐹𝐶,1024×	(number of affine parameters in all AdaIN blocks)

Input feature

𝐹𝐶,512×256

𝐹𝐶,256×256

Concatenated feature

Image feature:𝐹8 Text feature:	𝐹<

Channel concatenation

Attribute vector 𝒱

Predicted “parameters of affine transformation” in AdaIN

(a) Image encoder (𝐸8) (b) Spatial encoder (𝐸9) (c) AdaIN-based decoder (𝐷)

(d) The network to compute AdaIN parameters (ℳ)

(e) The attribute-vector generator (𝒜)

Image patch feature:	𝐹8M

Fig. 5. Detailed structure of the image encoder EI , spatial encoder EP , AdaIN-based decoder D, network to compute AdaIN parameters M, and
attribute vector generator A.

The text encoder ET adopts structure as bidirectional
LSTM [46], and it has two types of output. Given text input
S, we first obtain the feature of each word in S, which is the
recurrent output of LSTM. Such feature is denoted as FTW

with shape C×L, where L is the number of words in S and
C is the number of feature channel. FTW

can also be denoted
as {fw1, ..., fwL}, where fwi is the feature of i-th word with
shape as C×1. Suppose the final hidden state of LSTM after
process each word is h with shape C × 1 (which is a global
and coarse representation of S). We compute the cosine
similarity between h and fwi as Ri = (fT

wih)/(∥fwi∥∥h∥).
Inspired by the sequence-to-sequence NLP models [57], [58],
we fuse h and {fw1, ..., fwL} to obtain the final global
representation of S with attention mechanism of

FT = K(fw ⊕ h), fw =
∑

i=1,...,L

(fwi ×Ri), (12)

where FT is the text feature in Fig. 2, and K is one-layer
MLP with input size 512 and output size 256.

Moreover, the image encoder EI also produces two types
of features. The first one is the image patch feature FIP as
shown in Fig. 5(a), whose shape is H × W × C. H and
W are height and width of the feature; C is the number
of feature channel. The second one is the feature FI in Fig.
2, which is obtained as the final output of EI , the global
representation of the input image. FI and FT have the same
shape. Besides, LWsim

is computed between FIP and FTW
,

and LSsim
is computed between FI and FT [31].

Additionally, for each dataset, we split its training data
into n categories based on IDs of persons in the correspond-
ing dataset, and the discriminator D has the number of
output channels as n. Each channel responses to adversarial
learning of one category.

TABLE 1
Loss weights for our framework on different datasets.

λ1 λ2 λ3 λ4 λ5 λ6

PEDES [15] 30 100 100 1 50 1
CelebA [16] 2 20 5 1 10 1

Algorithm 1 Training Procedure
Parameter: Consistent training tuple (S, I, P ) where the
text S correctly describes all concerned attributes in image
I , and pose input P is the pose information for I .

1: while not converged do
2: Compute LRec, LAdv and LMat based on (S, I, P ),

and update EI , ET , ES , D, M based on them.
3: Compute LSim and update EI and ET .
4: Apply text augmentation (as shown in Fig. 4 of our

manuscript) on (S, I, P ) to obtain incomplete text, as
well as negative text. Then compute LAug based on
them, and update EI , ET , ES , D, M, A.

5: Compute LD and update D.
6: end while

3.5 Training Details
The details of loss weights for different datasets are listed in
Table 1. We use Adam optimizer [59] to train our framework,
with β1 and β2 set as 0.5 and 0.999 respectively. The learning
rate is set as 10−4. We summarize the training detail of our
framework in Algorithm 1. It is trained on an Intel 2.60GHz
CPU and one TITAN X GPU.

4 EXPERIMENTS

4.1 Datasets
In our experiments, CUHK-PEDES [15] and CelebA [16] are
utilized to validate the effectiveness of our apprach.
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TABLE 2
VQA-score (VQAs), reconstruction L1 error and FID of different

settings in the ablation study.

Method CUHK-PEDES CelebA
VQAs L1 FID VQAs L1 FID

w/o(Pos) 0.608 0.105 81.95 0.618 0.112 19.68
w/o(Neg) 0.094 0.099 60.39 0.138 0.089 22.20
w/o(PixI) 0.590 0.104 78.68 0.702 0.117 17.64
w/o(PerI) 0.596 0.106 80.57 0.742 0.093 17.93
w/o(AdvI) 0.592 0.098 82.00 0.704 0.103 18.61
w/o(PixT ) 0.520 0.102 77.94 0.592 0.091 17.06
w/o(PerT ) 0.648 0.105 76.70 0.692 0.097 18.02
w/o(AdvT ) 0.618 0.100 81.99 0.740 0.098 34.35
w/o(Sim) 0.550 0.103 80.63 0.678 0.100 20.77
w/o(Pix) 0.616 0.137 63.00 0.688 0.116 21.26
w/o(Per) 0.606 0.115 80.15 0.592 0.097 18.66
w/o(Adv) 0.624 0.097 80.42 0.740 0.092 31.76
with(GAN) 0.640 0.104 60.23 0.762 0.096 17.24
Ours 0.668 0.092 55.18 0.792 0.083 15.64

CUHK-PEDES CUHK-PEDES dataset [15] is a caption-
annotated pedestrian image dataset. This dataset contains
40,206 images of 13,003 persons collected from five per-
son re-identification datasets, which include CUHK03 [60],
Market-1501 [61], SSM [62], VIPER [63], and CUHK01 [64].
Especially, we use 80% of images in this dataset for training
and 20% for testing. The size of input image in this dataset
is 128× 64 for experiments.

Moreover, each image in CUHK-PEDES is annotated
with descriptions by crowd-sourcing. Given a set of pre-
defined semantic attributes, the workers on Amazon Me-
chanical Turk (AMT) write sentences to describe the at-
tributes in this defined set for each image. The sentence
pattern is “subject-predicate-(adjective)-object”, where the
“object” is obtained from the name space of attributes.
Besides, all sentences are consistent with the corresponding
images.

CelebA CelebA dataset [16] contains 202,599 face images,
each annotated with 40 attributes. To construct the textual
description for each image, we first select a set of attributes
and construct a positive and complete text with the basic
sentence pattern, i.e., “subject-predicate-(adjective)-object”.
Especially, we use the attribute values for each image to
provide the adjectives. In this way, we provide the complete
text description for each image. We adopt the train-test split
provided in this dataset. The size of input image in this
dataset is 128× 128 for experiments.

4.2 Evaluation Metrics

To illustrate the effect of various manipulation approaches,
we adopt three quantitative metrics for evaluation.

• VQA score We follow [5] to use VQA score
to measure the accuracy of manipulation. Given a
manipulated image, a question is designed according
to the attribute to manipulate. It is then passed to a
trained VQA model [65]. The VQA score is defined
by the accuracy that the predicted answer confirms
the manipulation target. A higher VQA score means
the model performs manipulation more correctly,
which is better.

• FID Score To quantify the level of realism of
manipulated images, we adopt Frechet Inception
Distance (FID) [66], which measures the distance
of the distribution between manipulated and real
images. Lower FID scores indicate better quality of
generated images.

• Reconstruction Error We also follow [1] to compute
L1 reconstruction error by editing images with pos-
itive text inputs, whose descriptions are consistent
with images, to measure the ability of preserving
irrelevant attributes during editing. When the con-
tent of text is consistent with the input image, the
synthesis result should be identical with the input.
Thus following [1], we use L1 to quantify the recon-
struction error. Lower L1 loss is better.

4.3 Ablation study
In this section, we perform ablation study to show the
effectiveness of each loss term in our framework.

4.3.1 Loss for module GM(S, I, P )

LMpos
and LMneg

play important roles in the training of the
manipulation module. Results without them are w/o(Pos)
and w/o(Neg). They are listed in Rows 1 and 2 of Table 2.

It shows that removing any of them causes decreas-
ing VQA scores and lowering manipulation accuracy. Es-
pecially, under the setting of “w/o(Neg)”, there are no
negative text inputs during the training, while text inputs
could be negative during the testing. Without training with
negative texts, the model could totally fail on generating
new appearances. Thus, the VQA score will decrease a
lot. Besides, deleting LMpos

or LMneg
also leads to the

increasement of FID and L1 error, indicating degradation of
image quality. These results demonstrate the effectiveness of
LMpos

and LMneg
.

4.3.2 Loss for module GI(I, P )

The loss to train this module includes the reconstruction
loss in pixel-level, feature-level and the GAN loss, which are
defined in Eqs. (4), (5) and (6). The results without them are
called w/o(PixI), w/o(PerI), and w/o(AdvI) respectively.
They are listed from Rows 3 to 5 in Table 2. It is clear that
removing any of these loss terms causes obvious decrease
on VQA score and increase on FID and L1 error.

When deleting the GAN loss from the image-based
generation module GI , the text-based generation module
GT can still produce pseudo label. However, due to the lack
of the GAN loss, the quality of synthesized images will be
decreased. This results in the decrease of VQA score and the
increase of FID and L1 error.

4.3.3 Loss for module GT (S, P )

The loss to train this module also includes the reconstruction
loss in pixel-level, feature-level and the GAN loss, which
are defined in Eqs. (7), (8) and (9). The results without
them are recorded from Rows 6 to 8 in Table 2, denoted
as w/o(PixT ), w/o(PerT ), and w/o(AdvT ) separately.

As shown, deleting any of these loss terms causes the
deterioration of the manipulation effect. Especially, under
the setting of w/o(AdvT ), the FID increases significantly,
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TABLE 3
Comparison with existing methods (with pose input) on the same

testing set.

Methods CUHK-PEDES CelebA
VQAs L1 FID VQAs L1 FID

SIS [2] 0.280 0.297 62.90 0.570 0.289 39.82
TAGAN [1] 0.518 0.136 80.23 0.622 0.150 23.88
MainGAN [3] 0.604 0.154 66.34 0.724 0.136 26.16
Prada [4] 0.446 0.273 91.36 − − −
Ours 0.668 0.092 55.18 0.792 0.083 15.64

while the VQA score decreases slightly. This indicates that
the GAN loss in the training of GT is critical for the
image quality, but does not play the key role to guide
the generation from text to image. As the text description
and images are paired in our training set, the consistency
between text and generated images are ensured with LTrec

(Eq. (7)) instead of the GAN loss in the training of GT .
Meanwhile, removing LSim reduces the performance as

shown in Row 9 of Table 2. This is because this loss enhances
the relation between the feature of image and text in the
shared space, which covers identical information.

4.3.4 More Ablation Settings
GI(I, P ) and GT (S, P ) learn image-text shared space to
help training of GM(S, I, P ). They adopt the same form
of loss. We analyze the effect if one class of loss term is
deleted from both modules simultaneously. We delete the
reconstruction loss with pixel level in LIrec

and LTrec
, and

list the results in Row 10 of Table 2. We also delete the
reconstruction loss with feature level in LIrec

and LTrec
and

show results in Row 11 of Table 2. The results of deleting
GAN loss (including LAdv and LD) are listed in Row 12
of Table 2. It is clearly that all these three ablation settings
cause VQA score dropping and increase of L1 error as well
as FID. This phenomenon proves the usefulness of our loss
terms again.

In addition, we also analyze the effect after adding GAN
loss in the training of GM(S, I, P ). We add the GAN loss
with the following setting: in each iteration, for an input
image I and a text input, we use the modified image from
GM as the fake sample, and set the input image I as the real
sample. The results are listed in Row 13 of Table 2 marked
as “with (GAN)” and demonstrate this ablation setting also
causes deterioration of performance. This is because such
GAN loss may impede the modification of the content, since
the generator will try to make the content of the fake sample
be the same as the real sample, causing the decrease of the
VQA score (i.e., for a negative text input, the modification
is more likely to fail compared with the setting of “Ours”).
As for the positive input, GAN encourages the model to
generate textures that make the manipulated outputs look
sharper. However, the generated textures may not be exact
the same as the ground truth, which leads to the increase of
L1 error.

4.4 Comparison with Related Methods

We compare our framework with state-of-the-art text-
guided image manipulation approaches. We choose meth-
ods that take text input and have official codes for fairness

TABLE 4
Comparison with existing methods (with their original configurations) on

the same testing set.

Methods CUHK-PEDES CelebA
VQAs L1 FID VQAs L1 FID

SIS [2] 0.326 0.254 66.32 0.598 0.257 36.32
TAGAN [1] 0.538 0.154 76.30 0.654 0.168 21.64
MainGAN [3] 0.622 0.128 61.34 0.752 0.153 30.48
Prada [4] 0.475 0.241 86.74 − − −
Ours 0.668 0.092 55.18 0.792 0.083 15.64

TABLE 5
Human evaluation for “quality and accuracy” and “usability”, between

our framework and all baselines.

Methods Quality and Accuracy Usability
PEDES CelebA PEDES CelebA

SIS [2] 0.017 0.018 0.000 0.033
TAGAN [1] 0.023 0.030 0.033 0.067
MainGAN [3] 0.067 0.087 0.033 0.033
Prada [4] 0.013 − 0.000 −
Ours 0.880 0.865 0.933 0.867

in comparison. TAGAN [1], Semantic Image Synthesis (SIS)
[2], MainGAN [3] and Prada [4] are four state-of-the-art text-
guided manipulation methods. We take pose input to their
manipulation modules by sending concatenation of image
and pose input to their convolutional encoders of images.
We only compare with Prada [4] on CUHK-PEDES, since it
is not applicable to the manipulation of facial images.

The quantitative results are recorded in Table 3. Our
method achieves the highest VQA score, and the lowest
L1 loss. This suggests that our framework manipulates con-
tent of images accurately while preserving original image
information that should not be manipulated. Besides, our
method yields the lowest FID, since the manipulated images
from our method are natural. Moreover, we compare against
MainGAN, TAGAN, SIS and Prada with their original con-
figuration (i.e., without pose input for their convolutional
encoders of images). The results are shown in Table 4.

4.5 Visual Comparison
Visual examples are in Figs. 6 and 7 for comparison between
our framework and the baselines (without pose input). The
text input is listed on the top of each target image.

For example, for the target image in the first row of
Fig. 6, “This man has (black → gray) pants” means that
black pants turn to gray. As shown in Fig. 6, our method
accomplishes higher manipulation accuracy and quality
compared with these baselines, on CUHK-PEDES dataset.
TAGAN performs better than SIS, while it still changes the
irrelevant content during manipulation. Moreover, although
Prada can achieve editing effect, its quality and accuracy is
lower. MainGAN produces better results than TAGAN and
SIS. But the result quality still has room to improve. It tends
to modify content that is not mentioned in the text, and
possibly fails to manipulate the target. Fig. 7 also shows
face result comparison.

4.6 Human Evaluation
We conduct user study for results on both CUHK-PEDES
and CelebA. We show each participant the input image
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S: This man has (black → gray) pants

S: He wears (dark blue → light gray) pants

S: He wears a (red → yellow) short shirt

S: He wears a (black → red) tee shirt

S: A man is wearing a (red → blue) shirt

I P Prada SIS TAGAN MainGAN Ours

Fig. 6. Visual comparison with baselines on CUHK-PEDES dataset.

TABLE 6
Comparison with all baselines for the task that edits both appearance

and spatial structure on CUHK-PEDES dataset.

Method VQAs FID
SIS [2] 0.302 75.24

TAGAN [1] 0.492 84.76
MainGAN [3] 0.575 68.32

Prada [4] 0.413 104.64
Ours 0.624 60.22

and text, as well as the manipulation results from different
methods. Then we ask him/her to choose the one with
the highest quality and accuracy. For each participant, we
raise 20 questions, and the number of participants is 30.
The results in Table 5 show that 88.0% and 86.5% of all
participants choose our results on the datasets of CUHK-
PEDES and CelebA respectively.

In another user study, we show each participant the
manipulation process and function of different methods,
since our framework obtains sequential results and control
pose simultaneously. We ask them to choose the best one
that satisfies their preference. For all 30 participants, 93.3%
and 91.5% of them agree that the usability of our framework
is the best on CUHK-PEDES and CelebA respectively as
shown in Table 5.

S: This woman has (straight → wavy) and (blond → brown) hair

S: This woman has (straight → wavy) and (black → blond) hair

S: This yound woman has (wavy → straight) and (black → brown) hair

S: This young woman has wavy and (brown → blond) hair

S: This woman has (straight → wavy) and (black → blond) hair

I P MainGAN TAGAN SIS Ours

Fig. 7. Visual comparison with baselines on CelebA dataset.

TABLE 7
Experiments to evaluate the ability of identity preservation on CelebA

dataset.

Method Proportion of Identity Preservation
SIS [2] 0.447
TAGAN [1] 0.585
MainGAN [3] 0.762
Ours 0.804

4.7 Editing Both Appearance and Spatial Structure
Different from existing approaches that only focus on edit-
ing appearance or spatial structure, our framework manip-
ulates both simultaneously. One may argue that this effect
can be achieved by applying spatial editing after appearance
manipulation. In this section, we show that this two-step
strategy is not optimal.

First, MainGAN, TAGAN, SIS and Prada all implement
editing of appearance. We finetune the pre-trained model of
[38] on the correspondingly edited samples, and apply the
finetuning model to spatial editing. For fairness, the target
poses are the same for all methods during spatial editing.
The results are shown in Table 6. Our method yields the
highest VQA score and lowest FID.

4.8 Ability of Identity Preservation
Since the face data has identity information, we need to
consider the ability of identity preservation during manip-
ulation. To verify the ability of identity preservation in our
framework, we set an experiment.

First, we train a network to classify the identity of dif-
ferent faces in CelebA dataset. The network structure takes
ResNet101 [56] as backbone. It yields accuracy of 91.05%.
Then, we use this trained classifier to compute the identity
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TABLE 8
Performance on the CUHK-PEDES dataset, with different forms of

structural input.

Method VQAs L1 FID
Keypoints 0.612 0.115 58.63
Skeletons 0.668 0.092 55.18

TABLE 9
The comparison with existing methods (with pose input) on the same
testing set, under the evaluation setting with the perturbations in the

pose inputs.

Methods CUHK-PEDES CelebA
VQAs L1 FID VQAs L1 FID

SIS [2] 0.268 0.306 66.13 0.558 0.291 42.35
TAGAN [1] 0.503 0.151 82.42 0.611 0.173 25.94
MainGAN [3] 0.582 0.178 68.89 0.705 0.162 30.01
Prada [4] 0.451 0.291 96.48 − − −
Ours 0.655 0.113 57.32 0.778 0.105 18.25

of testing images, by applying image manipulation methods
(includes TAGAN [1], SIS [2], MainGAN [3] and ours). We
report the proportion of images, whose classification results
are identical, before and after editing. The results are shown
in Table 7. Our framework effectively preserves identity
information during image manipulation.

To explain it, in our framework, although we drop the
spatial information of input images, pose input can ade-
quately replenish the spatial information. Also, features of
appearance from input images ensure manipulation output
due to unchanged appearance, except for the portion to edit.
Thus, the identity information is preserved in our AdaIN-
based framework, as suggested by [67].

4.9 Robustness of Structural Input
In this section, we first prove the robustness of our frame-
work when changing the form of structural input. Espe-
cially, we use keypoints to replace skeletons for experi-
ments on CUHK-PEDES, and the results are listed in Table
8. VQAs, L1 loss and FID are comparable, when using
skeletons as structural input. Thus, using keypoints in our
framework performs comparably.

To further study our framework’s performance with
more inaccurate structural input, we conduct an additional
experiment as follows. We use the same models and evalu-
ation protocols as in Table 3, while we add perturbations to
the coordinates of the key-points in the pose during evalua-
tion. For an image with a size of 128×64 and 128×128, the
perturbation size is set as [0, 12]. As shown in Table 9, our
method still gives superior results over baselines with the
perturbations in the pose. This indicates that in most cases,
the automatically predicted structural input is sufficiently
good for our model.

4.10 Interpolation between Image and Text Features
In this section, we show linear interpolation between image
and text features in our learned shared space. Existing
manipulation methods perform feature interpolation for
generation [1], [7] on the same types of features. Our frame-
work, contrarily, can perform interpolation between image
and text features. To verify it, we denote the image feature

S: This man is wearing a blue short sleeved shirt and dark coloured pants

S: The man is wearing a white shirt with black pants

S: A woman is wearing a red shirt and gray shorts

S: A man is wearing a black shirt and black pants

P I α=1 α=0.8 α=0.6 α=0.4 α=0.2 α=0

Fig. 8. Interpolation results on CUHK-PEDES dataset, which indicate
that image and text features are mapped in the same space. When α =
1, only image feature is used; when α = 0, only text feature is used.

S: The young woman has arched eyebrows, and wavy and blond hair

S: This young woman has wavy and brown hair with bangs

S: This woman is young, has wavy and blond hair

S: This woman is young, has wavy and blond hair

P I α=1 α=0.8 α=0.6 α=0.4 α=0.2 α=0

Fig. 9. Interpolation results on CelebA dataset, which indicate that image
and text features are mapped in the same space.

as FI and the text feature as FT as shown in Fig. 2. The
interpolated feature becomes F = FI × α + FT × (1 − α).
We visualize these features through the decoder D. If the
image and text features are mapped into the same space,
these interpolated features should produce images, whose
distribution is the same as the output when we use only
image or text feature for the decoder D.

Results of interpolation on CUHK-PEDES and CelebA
datasets are shown in Figs. 8 and 9. Interpolated features
produce reasonable intermediates. Moreover, the results
when α = 0 illustrate that GT (S, P ) can produce required
pseudo labels to guide formulation of LMneg .
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S: He is wearing a bright (yellow → white) shirt S: He is wearing long blue pants and a (black → blue) shirt

S: This man is wearing a (blue → green) short sleeved shirt S: The young man has a (white → red) shirt

S: A man wears a (white → yellow) shirt S: The man wears a (white → blue) long sleeved shirt

S: The woman is wearing a bright (yellow → white) shirt S: This man is wearing a (blue → red) shirt

I P α=0.4 α=0.6 α=0.8 α=1.0 α=1.2 α=1.4 α=1.6 I P α=0.4 α=0.6 α=0.8 α=1.0 α=1.2 α=1.4 α=1.6

Fig. 10. Visual illustration on CUHK-PEDES dataset. Our method not only manipulates the image with text input, but also controls manipulation
strength.

S: The woman has arched eyebrows, and has wavy and (blond → brown) hair

S: The woman has (straight → wavy) and (brown → blond) hair

S: This woman has wavy and (blond → brown) hair

S: This young woman has wavy and (brown → blond) hair

I P α=0.4 α=0.6 α=0.8 α=1.0 α=1.2 α=1.4 α=1.6

Fig. 11. Visual illustration on CelebA dataset. Our method not only manipulates the image with text input, but also controls manipulation strength.
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I P OI I P OI I P OI I P OI I P OI I P OI

Fig. 12. Visual examples of pose control on CUHK-PEDES.

I P OI I P OI I P OI I P OI

Fig. 13. Visual examples of pose control on CelebA dataset.

S: A man wears a (black → blue) shirt S: A man wears a (red → yellow) shirt

S: A man wears a (white → yellow) shirt S: This man wears dark blue shorts with a (white → yellow) shirt

I P α=0.4 α=0.6 α=0.8 α=1.0 α=1.2 α=1.4 α=1.6 I P α=0.4 α=0.6 α=0.8 α=1.0 α=1.2 α=1.4 α=1.6

Fig. 14. Visual illustration on CUHK-PEDES dataset. Our method implements pose control, and yields controllable manipulation strength.
S: This woman has (straight→ wavy) and (black → brown) hair

S: This woman has (straight → wavy) and (brown → blond) hair

I P α=0.4 α=0.6 α=0.8 α=1.0 α=1.2 α=1.4 α=1.6

Fig. 15. Visual illustration on CelebA dataset. Our method implements pose control, and yields controllable manipulation strength.
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S: The lady was wearing a (black → white) long sleeved blouse

S: The lady is wearing a (green short sleeved blouse → black long sleeved blouse)

I P α=0.4 α=0.6 α=0.8 α=1.0 α=1.2 α=1.4 α=1.6

Fig. 16. Visual illustration on Deepfashion dataset.

4.11 Interactive Manipulation
Our framework further allows interactive manipulation.
Users can control pose of output interactively, and tune edit
strength. Figs. 10 and 11 show the results of edit strength
control. As our framework implements manipulation by
moving image feature along the direction of attribute vector,
we control the edit strength by using different step sizes α.
As shown in the bottom row of Fig. 10, by varying α from 0.6
to 1.0, the color of shirt changes from “light red” to “bright
red”. In the second row of Fig. 11, α from 0.8 to 1.4 alters
hair from “unconspicuous blond” to “conspicuous blond”.

Figs. 12 and 13 present illustration of pose control. Note
that pose extraction is an independent module. Users can
adjust joints or landmarks of the extracted pose to obtain
desired pose, before passing temporary results to our frame-
work. Using pose input that is not consistent with the spatial
structure of the images to manipulate, we get corresponding
results as shown in Figs. 12 and 13.

Figs. 14 and 15 indicate that the pose control, by using
different pose input for identical image and text, can be
realized along with edit strength control. Moreover, expres-
sion editing for faces can be achieved by manipulating the
corresponding landmarks, as shown in Figs. 1 and 15.

4.12 Interactive Manipulation on Fashion Images
Interactive human image manipulation can greatly con-
tribute to online fashion [20], [68], [69]. Here, we apply our
framework to a fashion dataset to illustrate its generality.
We conduct experiments of interactive manipulation on
DeepFashion dataset [70] by adopting input pose with form
of skeleton. There are annotations of text, which describes
the corresponding images. Thus, this dataset meets the
requirement for training our framework.

The results are shown in Fig. 16. Our framework si-
multaneously controls the pose and edit strength during
manipulation. It produces modification and good-quality
images on this fashion dataset.

5 CONCLUSION

In this paper, through analyzing the characteristic of textual
instructions, we have proposed a novel framework for text-
guide human image manipulation. Compared with existing
approaches, our framework enables more interactive ma-
nipulation, where users can control appearance and spatial
editing simultaneously. Moreover, by encoding both text
and image features to the shared space, our method achieves
accurate manipulation by moving source images along cer-
tain attribute vectors in the shared space. Our framework
also allows for changing editing strength by generating a se-
ries of synthesis results. Extensive experiments on different
datasets have manifested the effectiveness and generality of
our framework.

REFERENCES

[1] S. Nam, Y. Kim, and S. J. Kim, “Text-adaptive generative adver-
sarial networks: manipulating images with natural language,” in
NIPS, 2018.

[2] H. Dong, S. Yu, C. Wu, and Y. Guo, “Semantic image synthesis via
adversarial learning,” in ICCV, 2017.

[3] B. Li, X. Qi, T. Lukasiewicz, and P. H. Torr, “Manigan: Text-guided
image manipulation,” in CVPR, 2020.

[4] S. Zhu, R. Urtasun, S. Fidler, D. Lin, and C. Change Loy, “Be your
own prada: Fashion synthesis with structural coherence,” in ICCV,
2017.

[5] X. Zhou, S. Huang, B. Li, Y. Li, J. Li, and Z. Zhang, “Text guided
person image synthesis,” in CVPR, 2019.

[6] J. Chen, Y. Shen, J. Gao, J. Liu, and X. Liu, “Language-based image
editing with recurrent attentive models,” in CVPR, 2018.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 12,2021 at 02:03:22 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3085339, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[7] P. Upchurch, J. Gardner, G. Pleiss, R. Pless, N. Snavely, K. Bala,
and K. Weinberger, “Deep feature interpolation for image content
changes,” in CVPR, 2017.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in NIPS, 2014.

[9] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-
semantic embeddings with multimodal neural language models,”
arXiv:1411.2539, 2014.

[10] I. Laina, C. Rupprecht, and N. Navab, “Towards unsupervised
image captioning with shared multimodal embeddings,” in ICCV,
2019.

[11] X. Hou, L. Shen, K. Sun, and G. Qiu, “Deep feature consistent
variational autoencoder,” in WACV, 2017.

[12] Y.-C. Chen, X. Xu, Z. Tian, and J. Jia, “Homomorphic latent space
interpolation for unpaired image-to-image translation,” in CVPR,
2019.

[13] Y.-C. Chen, H. Lin, M. Shu, R. Li, X. Tao, X. Shen, Y. Ye, and J. Jia,
“Facelet-bank for fast portrait manipulation,” in CVPR, 2018.

[14] Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the latent space
of gans for semantic face editing,” in CVPR, 2020.

[15] S. Li, T. Xiao, H. Li, B. Zhou, D. Yue, and X. Wang, “Person search
with natural language description,” in CVPR, 2017.

[16] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in ICCV, 2015.

[17] R. Manuvinakurike, J. Brixey, T. Bui, W. Chang, D. S. Kim, R. Art-
stein, and K. Georgila, “Edit me: A corpus and a framework for
understanding natural language image editing,” in Proceedings
of the Eleventh International Conference on Language Resources and
Evaluation, 2018.

[18] R. Manuvinakurike, T. Bui, W. Chang, and K. Georgila, “Conver-
sational image editing: Incremental intent identification in a new
dialogue task,” in Proceedings of the 19th Annual SIGdial Meeting on
Discourse and Dialogue, 2018.

[19] H. Wang, J. D. Williams, and S. Kang, “Learning to globally edit
images with textual description,” arXiv:1810.05786, 2018.
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