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Abstract

Contemporary image rescaling aims at embedding a
high-resolution (HR) image into a low-resolution (LR)
thumbnail image that contains embedded information for
HR image reconstruction. Unlike traditional image super-
resolution, this enables high-fidelity HR image restoration
faithful to the original one, given the embedded informa-
tion in the LR thumbnail. However, state-of-the-art image
rescaling methods do not optimize the LR image file size for
efficient sharing and fall short of real-time performance for
ultra-high-resolution (e.g., 6K) image reconstruction. To
address these two challenges, we propose a novel frame-
work (HyperThumbnail) for real-time 6K rate-distortion-
aware image rescaling. Our framework first embeds an HR
image into a JPEG LR thumbnail by an encoder with our
proposed quantization prediction module, which minimizes
the file size of the embedding LR JPEG thumbnail while
maximizing HR reconstruction quality. Then, an efficient
frequency-aware decoder reconstructs a high-fidelity HR
image from the LR one in real time. Extensive experiments
demonstrate that our framework outperforms previous im-
age rescaling baselines in rate-distortion performance and
can perform 6K image reconstruction in real time.

1. Introduction
With an increasing number of high-resolution (HR) im-

ages being produced and shared by users on the internet,
a new challenge has arisen: how can we store and transfer
HR images efficiently? Storing HR images on the cloud,
such as iCloud, is becoming a widely adopted solution that
saves storage on a user’s mobile device (e.g., smartphones)
as only their low-resolution (LR) counterparts are stored on
the mobile device for an instant preview. However, when
a user wants to obtain the full-resolution image, the entire
HR image must be downloaded on the fly from the cloud,
which can result in a poor user experience when the internet
connection is unstable or not available.

Real-time image rescaling can serve as a competitive so-
lution to improving the user experience of cloud photo stor-
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Figure 1. The application of 6K image rescaling in the con-
text of cloud photo storage on smartphones (e.g., iCloud). As
more high-resolution (HR) images are uploaded to cloud stor-
age nowadays, challenges are brought to cloud service providers
(CSPs) in fulfilling latency-sensitive image reading requests (e.g.,
zoom-in) through the internet. To facilitate faster transmission and
high-quality visual content, our HyperThumbnail framework helps
CSPs to encode an HR image into an LR JPEG thumbnail, which
users could cache locally. When the internet is unstable or unavail-
able, our method can still reconstruct a high-fidelity HR image
from the JPEG thumbnail in real time.

age, as shown in Fig. 1. Such a solution can first embed an
HR image (on the cloud) into an LR JPEG thumbnail (on
the mobile device) by an encoder, and the thumbnail pro-
vides an instant preview with little storage. When the user
wants to zoom in on the thumbnail, the HR image with fine
details can be reconstructed locally in real time. In addition,
image rescaling has other applications in image sharing, as
it can “bypass” the resolution limitation of some platforms
(e.g., WhatsApp) to reconstruct a high-quality HR image
from an LR one [59]. While modern smartphones and cam-
eras can capture ultra-high-resolution images in 4K (iPhone
13) or even 6K (Blackmagic camera), we are interested in
designing a real-time image rescaling framework for ultra-
high-resolution images (e.g., 4K or 6K), which minimizes
LR file size while maximizing HR and LR image quality.

However, existing image rescaling methods have their
own flaws in practice, as shown in Table 1 where we
compare different image rescaling methods in terms of
their properties. One potential solution is to upsample the
downsampled thumbnail with super-resolution (SR) meth-
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Method (a) Downsampled JPEG +
super-resolution [37] (b) Flow-based rescaling [36, 57] (c) Ours

Architecture HR LR
.jpg

𝐻𝑅% HR 𝐻𝑅#LR HR 𝐻𝑅#LR
.jpg

Reconstruction fidelity % ! !
Rate-distortion optimization % % !
Real-time 6K reconstruction – % !

Table 1. The comparison of different methods related to image rescaling. (a) Super-resolution from downsampled JPEG does not
optimize rate-distortion performance and can hardly maintain high fidelity due to information lost in downsampling. (b) SOTA flow-based
image rescaling methods also ignore the file size constraints and are not real-time for 6K reconstruction due to the limited speed of invertible
networks. (c) Our framework optimizes rate-distortion performance while maintaining high-fidelity and real-time 6K image rescaling.

ods [14, 17, 35, 37, 63, 64] (Table 1(a)). However, such a
framework applies a simple downsampling strategy (e.g.,
Bilinear, Bicubic) to the HR image so that high-frequency
details are basically lost in the LR thumbnail. Also, SR
methods only focus on HR reconstruction, which leads to
a sub-optimal image rescaling performance. Instead, ded-
icated image rescaling approaches aim to embed informa-
tion into a visually pleasing LR image and then recon-
struct the HR image with an upsampling module. Recently,
state-of-the-art image rescaling works utilize normalizing
flow [25,36,57,59] show impressive image embedding and
reconstruction capability that outperforms SR approaches,
in terms of the reconstructed HR image quality. However,
there are still some great challenges to apply these flow-
based rescaling frameworks in real-world applications, as
shown in Table 1(b). First, the file size of the LR thumbnail
is not optimized. Second, the reconstruction stage of these
image rescaling methods is computationally expensive due
to their invertible network architecture with extensive use
of dense blocks [23]: IRN [57] costs about a second to re-
construct a 4K image with 4x rescaling on a modern GPU,
which is far from real time (Table 2).

In this work, we propose the HyperThumbnail, a rate-
distortion-aware framework for 6K real-time image rescal-
ing, as shown in Table 1(c). In this framework, we embed
an HR image into a low-bitrate JPEG thumbnail by an en-
coder and a quantization table predictor, as JPEG is a dom-
inant image compression format today [3]. Then the JPEG
thumbnail can be upscaled to its high-fidelity HR counter-
part with our efficient decoder in real time. We leverage
an asymmetric encoder-decoder architecture, where most
computation is put in the encoder to keep the decoder
lightweight. This makes it possible for our decoder to up-
scale a thumbnail to 6K in real time, significantly faster than
previous flow-based image rescaling methods [36, 57].

Meanwhile, the Rate-Distortion (RD) performance is an
important and practical metric rarely studied in prior rescal-
ing works. In this paper, we define the rate as the ratio
between the thumbnail file size and the number of pixels

in the HR image, also known as the bits-per-pixel (bpp).
The distortion consists of two parts: the perceptual qual-
ity of the thumbnail (LR distortion) and the fidelity of the
restored HR image (HR distortion). The rate-distortion per-
formance evaluates an image rescaling framework in both
storage cost and visual quality. Without explicit RD con-
straints, recent works in image rescaling [36, 57] do not
consider RD performance in their models. While some
works [26,49,55,56,60] leverage the rate constraint by em-
bedding extra information in JPEG, they simply utilize a
fixed differentiable JPEG module, which we argue is sub-
optimal for image rescaling. Because such a process dete-
riorates the information in the embedding images without
considering their local distribution. Moreover, the quanti-
zation process of JPEG introduces noise in the frequency
domain and introduces well-known JPEG artifacts, which
brings great challenges to information restoration.

To remedy these issues, our image rescaling framework
is designed to jointly optimize image quality and bpp with
entropy models. Instead of using fixed quantization ta-
bles in conventional JPEG (Sec. 3.1), we propose a novel
quantization prediction module (QPM) that predicts image-
adaptive quantization tables, which can optimize RD perfor-
mance. We further adopt a frequency-aware decoder which
alleviates JPEG artifacts in the thumbnails and improves
HR reconstruction. Moreover, our asymmetric encoder-
decoder framework can be extended to optimization-based
compression.

Our contributions are summarized as follows:

• We propose a 6K real-time rescaling framework with
an asymmetric encoder-decoder architecture, named
HyperThumbnail, which embeds a high-resolution im-
age into a JPEG thumbnail that can be viewed in pop-
ular browsers. The decoder utilizes both spatial and
frequency information to reconstruct high-fidelity im-
ages in real time for 6K image upsampling.

• We introduce a new quantization prediction module
(QPM) that improves the RD performance in the en-
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coding stage of our framework. Furthermore, we adopt
rate-distortion-aware loss functions along with QPM
to optimize the RD performance.

• Experiments show that our framework outperforms
state-of-the-art image rescaling methods with higher
LR and HR image quality and faster reconstruction
speed at similar file size.

2. Related Work

2.1. Image Super-resolution

Image super-resolution (SR) targets at restoring HR im-
ages from LR images. Pioneering works on SR such as
SRCNN [17], EDSR [37], and other successors [14, 33, 34,
63,64] exploit deep neural networks to solve the challenges
in image SR. Recently, Liang et al. [35] propose a Swin
Transformer-based framework with state-of-the-art image
SR performance. In addition, Wang et al. [52, 53] extend
SRGAN [31] and demonstrate the potential of producing
perceptually pleasing HR images with a GAN-based gener-
ator. Despite great recent progress, most of these methods
assume a simple deterministic downsampling process (e.g.,
Bicubic downsampling [41]), which limits the reconstruc-
tion quality of high-frequency details in image SR.

2.2. Image Rescaling

Different from SR, image rescaling aims to downsam-
ple the given HR image into a visually satisfying LR im-
age with embedded information, and then reconstruct the
HR image with high fidelity. A straightforward solution
is downscaling using detail-preserving methods [29] and
upscaling with heavy SR networks [14, 35, 37]. Recently,
efforts have been made to apply invertible neural network
(INN) to image rescaling. INN [9, 12, 15, 16, 19, 28, 30, 44]
provides direct access to the inverse mapping of the for-
ward function, making it a popular framework for image
rescaling [13,36,57]. Xiao et al. [57] make the first attempt
to model image downscaling and upscaling using invertible
transformation. Liang et al. [36] further formulate the high-
frequency components in INNs as a conditional distribution
on LR image. However, the equivalence in the computa-
tional cost of the encoding and decoding process of INN
makes it almost impossible to optimize the backward in-
ference time independently, which limits its practicality in
latency-aware scenarios. Besides, the file size of the embed-
ding LR image in existing rescaling frameworks is yet to be
studied. In this paper, we leverage the RD metric to evalu-
ate the rescaling methods from a real-world perspective and
compare our framework with existing image rescaling mod-
els in terms of their bpp and restored HR fidelity.

2.3. Image Compression

Instead of only shrinking the image size spatially, im-
age compression approaches optimize the RD performance
by first producing a compact bitstream, then decoding
HR from the bitstream. Recently, learning-based meth-
ods [5–7,21,27,32,40,45,50,58] have improved RD perfor-
mance by a large margin with neural encoders and decoders.
However, these methods have not been widely adopted on
the internet due to issues related to software compatibility
or runtime efficiency. If users of neural compression need
a thumbnail for easier manipulation and preview, they need
to save another redundant file besides the bitstream, which
is inconvenient and takes extra storage. Thus, traditional
compression algorithms (e.g., JPEG [51]) are still popular
on most social media platforms [3].

In this work, we embed HR images into LR JPEG
thumbnails and restore HR images with a 6K real-time de-
coder. Training neural networks with the non-differentiable
JPEG algorithm is challenging. Previous works approxi-
mate JPEG either with the iterative optimization [26] or the
differentiable degradation simulator [49, 65] during train-
ing, and revert to the conventional JPEG algorithm at test
time. However, these methods do not optimize the RD
performance in their models. In a concurrent work, Xiao
et al. [56] extend IRN with a fixed JPEG compression mod-
ule and an extra JPEG artifact removal module. However,
they have not considered the bpp and the reconstruction
quality as a joint optimization problem. In this work, we
propose a novel differentiable JPEG process with the QPM
guided by a bitrate loss for RD performance optimization.
Moreover, our real-time decoder reconstructs the HR image
from both the spatial and frequency domains of a thumbnail
and further improves the reconstruction quality.

3. Method

3.1. JPEG Preliminary

As our solution involves optimizing the rate-distortion
(RD) performance of the JPEG thumbnail, we briefly sum-
marize the JPEG algorithm [51] in this section. The JPEG
algorithm compresses an image in three steps. First, given
an RGB image y ∈ R3×h×w, the algorithm converts y
into the luma-chroma color space (YCbCr). Second, the
converted image is divided into 8× 8 pixel blocks as y ∈
R3×N×8×8, where N = h×w

8×8 . Then, y is transformed to
its corresponding Discrete-Cosine-Transform (DCT) coef-
ficients C ∈ R3×N×8×8:

C = (CY , CCb, CCr) = DCT(yY , yCb, yCr). (1)

Third, the luma coefficient CY and chroma coefficient
CC = (CCb, CCr) are quantized separately by two quan-
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Figure 2. The overview of our approach. Given an HR input image x, we first encode x to its LR representation y with the encoder
E, where the scaling factor is s. Second, we transform y to DCT coefficients C and predict the quantization tables QL, QC with our
quantization prediction module (QPM). Third, we adopt an entropy model [6] to estimate the bitrate of the quantized coefficients C̃ at
training stage. After the rounding and truncation, which we denoted as [·], the [QL], [QC ] and [C̃] can be written and read with off-the-
shelf JPEG API at the testing stage. To restore the HR, we extract features from Ĉ with a frequency feature extractor f and produce the
high-fidelity image x̂ with the decoder D.

tization tables QL and QC :

C̃Y =
CY
[QL]

, C̃C =
CC
[QC ]

, (2)

where [·] represents the rounding and truncation function.
Unlike the original JPEG algorithm which applies a set of
image-invariant quantization tables, our work predicts the
QL and QC with the QPM (Sec. 3.3) for different images.
As shown in the bottom-right of Fig. 2, the quantization ta-
bles [Q] = ([QL], [QC ]) and quantized DCT coefficients
[C̃] = ([C̃Y ], [C̃C ]) are encoded into a JPEG file. At the
decoding phase, the JPEG decoder can extract [Q], [C̃] from
the JPEG file for image reconstruction with inverted opera-
tions of above steps:

ĈY = [C̃Y ][QL], ĈC = [C̃C ][QC ], (3)

and ŷ = IDCT(Ĉ), where IDCT is the inverse operation of
DCT, and Ĉ is the abbreviation of [ĈY , ĈC ].

3.2. Overview of HyperThumbnail

Inspired by recent progress in high-fidelity efficient
restoration through an efficient MLP [42] or a small trans-
former [22], we adopt an asymmetric encoder-decoder
framework, which enables real-time reconstruction. Fig. 2

illustrates the overview of our framework. Given an HR
input image x ∈ R3×H×W , we first generate its LR repre-
sentation y ∈ R3×H

s ×
W
s through our encoder E, where the

s is the rescaling factor and our encoder E is an U-Net [46]
with dense blocks [23]. To further decrease the file size,
we transform y to DCT coefficients C ∈ R3×H×W

64×s2
×8×8.

Then, we quantize C with image-specific quantization ta-
bles Q ∈ R2×8×8 (Sec. 3.3). During the test time, we
encode and decode (Q, C̃) with off-the-shelf JPEG API,
and then retrieve (Ĉ, ŷ) with Eqn. (3). In the upsampling
stage, we reconstruct the high-fidelity HR x̂ with our effi-
cient frequency-aware decoder in real time (Sec. 3.4).

3.3. Quantization Prediction Module

As JPEG [51] is a widely adopted compression algo-
rithm, some previous methods [26, 49, 60, 65] in image em-
bedding also introduce JPEG (Sec. 3.1) to compress their
encoded image. However, JPEG degrades the embedded
information in the encoded image and leads to a perfor-
mance drop in the decoding stage (Sec. 5). JPEG uses fixed
quantization tables with constant values [51], which we be-
lieve is suboptimal since different images have different fre-
quency distribution. Hence, besides encoding HR images
to LR thumbnails, we also predict the quantization tables Q
for each thumbnail with the quantization prediction module
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(QPM), which boosts the RD performance of our frame-
work significantly. The QPM is implemented as two sep-
arate 8-layer multilayer perceptron (MLPs): the luma pre-
dictor MLPL and the chroma predictor MLPC . For block
Ck = (CY,k, CC,k), we vectorize Ck into a 1D vector and
produce its quantization table with QPM. Thus we have

QL =

∑
kMLPL(CY,k)

|CY,k|
, QC =

∑
kMLPC(CC,k)

|CC,k|
, (4)

where | · | denotes the block counts. To facilitate the conven-
tional JPEG codec, we take the average Q as the quantiza-
tion table for the whole image. Following the training stage
of learned compression [7], we adopt the additive uniform
noise ε where each element follows U(− 1

2 ,
1
2 ) to approx-

imate the non-differentiable quantization noise introduced
in Eqn. (2):

C̃Y =
CY

QL + ε
+ ε, C̃C =

CC
QC + ε

+ ε. (5)

In the testing stage, we switch back to the standard quanti-
zation function in Eqn. (2) to fit the JPEG API. Experiments
show that our QPM predicts better quantization tables Q
so that it improves the RD performance of our framework
(Sec. 5). Our experiments in the supplement also show that
our QPM improves the standard JPEG algorithm.

3.4. Frequency-aware Decoder

As mentioned in Sec. 3.1, the JPEG quantization is ap-
plied on the DCT domain coefficients C̃ and leads to the
well-known quantization noise. Previous works [49,55,60]
usually decode the embedded information from the RGB
domain of the JPEG image. However, we note that quan-
tization noise can be approximated by simple independent
uniform noise [6] in the DCT domain, but it is nonlinear and
more complex to model in the RGB domain after IDCT.

Inspired by recent works in JPEG artifact removal [18,
20, 54, 62] and image generation [43], we further propose
a novel plug-in named frequency feature extractor f for
additional frequency domain perception. We first reshape
the dequantized DCT coefficients into a sparse represen-
tation Ĉ ∈ R192×H

8s×
W
8s [43]. Then, we extract features

f(Ĉ) ∈ R24×H
s ×

W
s and concatenate f(Ĉ) with the RGB

image ŷ. The concatenated features are fed into the decoder
to reconstruct the HR image x̂:

x̂ = D(ŷ ⊕ f(Ĉ)), (6)

where ⊕ is the concatenation operator along the channel
dimension. Since Ĉ is 1

8 of ŷ in the spatial resolution, f
takes negligible computational overhead. In this way, our
decoder is lightweight enough to reconstruct 6K HR images
in real time (Fig. 5). f improves our RD performance and is
more efficient than increasing the decoder capacity. Please
refer to our supplement for more details of our architecture.

3.5. Training Objectives

Bitrate loss To optimize the RD performance of our frame-
work, it is critical to estimate the code length (bitrate) of the
quantized coefficients C̃ at the training stage. Inspired by
Ballé et al. [6], the rate R of C̃ is estimated with differen-
tiable fully-factorized entropy models:

R = Ex∼px [− log2 pL(C̃Y )−log2 pC(C̃Cb)−log2 pC(C̃Cr)],
(7)

where pL and pC are two fully-factorized entropy mod-
els for luma and chroma coefficient maps, respectively. In
our work, we reshape C̃ to (3, 64, H8s ,

W
8s ), and assume the

value of each pixel in C̃ to be independent following Ballé
et al. [6]. For accurate rate estimation, we train pL and pC
to model the 64-channel probability density functions of C̃Y
and (C̃Cb, C̃Cr) by minimizing an auxiliary loss Laux [7].
The bpp of the restored image x̂ is calculated by

Lbpp =
R

H ×W
. (8)

More details of auxiliary loss is provided in the supplement.
Reconstruction and guidance loss Thanks to the fully dif-
ferentiable pipeline (Fig. 2), it is possible for us to train our
encoder, QPM and decoder with similar loss terms used in
previous works [36, 57]. Following IRN [57], we employ
L1 on the reconstructed x̂ and a L2 guidance loss on the
JPEG thumbnail ŷ:

Lrecon =
||x̂− x||1
H ×W

, (9)

Lguide =
||ŷ − yref ||22

(H/s)× (W/s)
, (10)

where yref is a guidance image downsampled from x with
bicubic interpolation [41]. Altogether, we train our frame-
work by minimizing the total loss Lrescale:

Lrescale = Lrecon + λ1Lguide + λ2Lbpp. (11)

Empirically, we set λ1 = 0.6. The target bpp of our frame-
work could be adjusted by a loss scaling factor λ2, which
we set to 0.01 for most experiments. The total loss Lrescale
is adopted to optimize the parameters of the encoder, the
decoder, and QPM.

4. Experiments
4.1. Experimental Setup

Evaluation metrics We evaluate our upscaling efficiency
using running time and multiply-accumulation operations
(MACs). We evaluate the quality of our reconstructed and
embedding images using the PSNR on RGB channels.

5



Method Bitrate↓-Distortion↑ [1] Upscaling Efficiency↓ Reconstructed HR PSNR↑
Down & Degradation & Up bpp PSNR Time (ms) GMacs Set5 Set14 BSD100 Urban100 DIV2K FiveK-6k

Bicubic & JPEG & Bicubic 0.29 25.18 – – 25.14 23.49 24.02 21.05 25.70 26.90
Bicubic & JPEG & EDSR [37] 0.29 26.77 91.0 1007.5 28.34 25.73 25.60 23.58 27.83 27.23
Bicubic & JPEG & SwinIR [35] 0.29 26.93 4012.6 6208.7 28.56 25.99 25.72 24.09 28.07 27.44
ComCNN & RecCNN [26] 0.32 27.02 469.7 6014.7 28.29 25.84 25.78 23.70 27.99 27.40
IRN [57] & JPEG 0.31 28.48 977.8 4751.7 30.00 27.23 26.91 25.72 29.54 27.96
HCFlow [36] & JPEG 0.30 28.76 1025.9 4626.0 29.98 27.41 27.05 26.19 29.71 28.01

Ours-full 0.30 29.67 247.9 1277.5 30.48 28.21 27.93 27.35 30.49 28.51
Ours 0.30 29.42 37.8 156.2 30.22 27.87 27.66 26.62 30.15 28.15

Table 2. Quantitative evaluation of upscaling efficiency and reconstruction fidelity. We keep bpp around 0.3 on Kodak [1] for different
methods, and the distortion is measured by the PSNR on the reconstructed HR images. Our approach outperforms other methods with better
HR reconstruction and a significantly lower runtime. We measure the running time and GMacs of all models by upscaling a 960 × 540
LR image to a 3840 × 2160 HR image. The measurements are made on an Nvidia RTX 3090 GPU with PyTorch-1.11.0 in half-precision
mode for a fair comparison.

Ground Truth IRN [57] 4× & JPEG q=96 HCFlow [36] 4× & JPEG q=90 Ours 4× Ours-full 4×

bpp↓ / PSNR(RGB)↑ 0.324 / 22.82 0.296 / 22.47 0.240 / 24.32 0.238 / 24.78

bpp↓ / PSNR(RGB)↑ 0.350 / 25.45 0.304 / 25.11 0.272 / 25.69 0.271 / 26.03

Figure 3. Reconstructed HR images and LR thumbnails by different methods on the DIV2K [4] validation dataset. We crop the
restored HR images to ease the comparison and visualize the LR counterparts at the bottom-right. The bpp is calculated on the whole
image and the PSNR is evaluated on the cropped area of the reconstructed HR images.

Rescaling methods are developed to embed an HR im-
age into an LR one to reduce file size. However, there is no
existing comprehensive evaluation of bitrate for these meth-
ods. Following previous compression approaches [6, 7, 58],
we evaluate the RD performance with the HR reconstruc-
tion PSNR against bits-per-pixel. Instead of estimating the
bitrate from the entropy encoder (Eqn. (7)) during training,
we use the real file size of JPEG thumbnails for evaluating
the bitrate:

bpp = Ex∼px [
file size
H ×W

]. (12)

Since there exists a trade-off between image bitrate and
fidelity, we visualize the rate-distortion curve of different
models during our ablation study.
Datasets We train our model with the widely-used
DIV2K [4] image dataset, which contains 800 2K-
resolution images in the training set and 100 more in the

validation set. From the perspective of rescaling, we test our
model on 4 conventional datasets: the Set5 [10], Set14 [61],
BSD100 [38], and Urban100 [24]. To reveal our real-world
performance, we collect first 20 images above 6K resolu-
tion (ranked by their bpp) from MIT-Adobe FiveK [11] as
another test set FiveK-6k. In addition, we evaluate the RD
performance on Kodak dataset [1], which is widely adopted
in image compression researches [8]. The details of the
training strategy are provided in the supplement.

4.2. Compare with Baselines

We consider three categories of reconstruction methods
as our baselines: (1) downscaling with Bicubic interpola-
tion, compressing with standard JPEG codec, and upscaling
with state-of-the-art SR models [35, 37]; (2) autoencoder
using standard JPEG transmission format [26]; (3) rescal-
ing using symmetric invertible neural network [36, 57] and
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Method LR thumbnail PSNR↑
Down & Degradation Kodak Set5 Set14 BSD100 Urb100 DIV2K FiveK-6k

Bicubic & JPEG 37.72 34.41 35.79 37.43 36.64 37.14 35.14
IRN [57] & JPEG 30.95 30.00 27.23 26.91 25.72 29.54 31.25
ComCNN & RecCNN [26] 28.00 26.76 26.47 27.47 25.57 28.15 28.99
HCFlow [36] & JPEG 19.88 20.08 19.42 19.65 18.96 20.52 20.31

Ours-full 33.21 31.86 31.76 32.44 31.01 33.32 33.99
Ours 33.55 31.96 31.93 32.90 31.16 33.62 34.24

Table 3. Quantitative evaluation of the 4× downsampled LR
thumbnails by different methods. The target bitrate is around 0.3
bpp on Kodak [1] for all methods, and we take Bicubic LR as the
ground truth. Our thumbnail preserves visual contents better.

compressing the LR image using standard JPEG codec. For
fair evaluation, we improve the RD performance of base-
lines using standard JPEG compression. We retrain SR
models [35, 37] on LR JPEG compressed images to restore
HR images. Besides, we retrain INN baselines [36, 57] and
encoder-decoder baselines [26] with a differentiable JPEG
module [48]. To compare our RD performance against
baselines, we constrain their bpp on Kodak dataset to be
around 0.3 by adjusting the quality factor of JPEG com-
pression in all baselines. In our supplement, we provide
an additional comparison with image compression (e.g., the
original JPEG) and rescaling baselines using their original
transmission format (e.g., lossless PNG), where our advan-
tage is even larger.
Upscaling efficiency and HR fidelity Table 2 presents the
upscaling efficiency of all methods and reconstruction fi-
delity at around 0.3 bpp. We measure the running time and
GMacs of upscaling a 960 × 540 resolution LR image to a
3840 × 2160 HR image on an Nvidia RTX 3090 GPU. We
use PyTorch implementation with 16 bits floating-point pre-
cision for a fair comparison. As shown in Table 2, “Ours”
model only costs 3.1% of the GMacs and 3.7% of upscal-
ing time compared to HCFlow [36]. We still improve the
reconstructed RGB PSNR by 0.61 dB on BSD100 test set
with a significantly lower computation.

In addition, we train the “Ours-full” model with a larger
decoder. “Ours-full” model achieves higher PSNR that out-
performs HCFlow [36] and IRN [57] for more than 1.16 dB
on Urban100 test set with only 24.2% of upscaling time.
Fig. 3 provides the visual comparison of restored images.
From left to right, we show perceptual differences from
ground truth, 4× rescaling results of the baselines [36, 57]
with JPEG, and our framework. For the first row, our mod-
els restore more textures of the glass and the pot lid. Simi-
larly, among all reconstructions in the second row, only our
model can recover the details on hair and earmuffs. Besides,
the JPEG compression breaks the invertibility of the INN-
based rescaling methods [36,57], they failed to restore sharp
and accurate high-frequency textures in the HR images.
LR qualitative evaluation The visual quality of the LR
thumbnails is also important because users preview them

Bicubic IRN [57]4× HCFlow [36]4× Ours Ours-full
4× & JPEG q=96 & JPEG q=90 4× 4×

bpp↓ /PSNR↑ 0.510 / 26.67 0.468 / 17.47 0.430 / 27.99 0.446 / 27.90

Figure 4. Downscaled LR thumbnails by different methods on
Set14 image comic. With a similar target bpp, our model intro-
duces least artifacts in the thumbnail in comparison to baselines.

(a) Encoder (b) Decoder
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Figure 5. Model runtime. We profile the 4× encoder and decoder
at different target resolution in half-precision mode. Especially,
we convert our decoder from PyTorch to TensorRT for further in-
ference time reduction.

directly. Table 3 presents the average LR PSNR of cor-
responding models, we have the best LR PSNR against
INN-based methods. In Fig. 4, we qualitatively compare
the visual quality of the thumbnails encoded by rescaling
methods. Our method generates LR thumbnails with sig-
nificantly fewer artifacts without compromising much HR
reconstruction quality, please see more analysis in Sec. 5.

4.3. Real-time Inference on 6K Images

Fig. 5 shows our evaluation of the downscaling and
upscaling runtime of our framework at multiple resolu-
tions. Noted that we conduct the profiling in half-precision
(FP16) mode. Besides, we also converted the trained de-
coder model from PyTorch to FP16 TensorRT model with
torch2trt [2] API to further reduce the upscaling time with-
out performance drop in HR reconstruction. As shown in
Fig. 5(b), our efficient decoder can upscale an LR thumb-
nail by 4× in real time at 4K (3840 × 2160) 70.8 FPS,
5K (5120× 2880) 38.8 FPS, or 6K (5760× 3240) 31.2 FPS
on an RTX 3090 GPU.

4.4. Extension for Optimization-based Rescaling

Since the ground truth HR images are available for
downscaling during the test stage, we may further optimize
our encoder E, QPM, and Entropy model, while fixing the
pretrained decoder D and feature extractor f on the user’s
device. As shown in the Table 4, optimization-based rescal-
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kodim04 / kodim09 (a) Ours with Fixed JPEG tables, q=85 (b) Ours with Optimized tables (c) Ours with QPM kodim04 (d) Ours with QPM kodim09

bpp↓ / LR↑ / HR↑: kodim09 0.263 / 26.91 / 30.54 0.289 / 29.10 / 30.93 - 0.246 / 31.03 / 34.34

bpp↓ / LR↑ / HR↑: kodim04 0.251 / 26.96 / 31.35 0.276 / 29.17 / 31.71 0.240 / 34.38 / 32.03 -
Figure 6. Quantization tables on Kodak [1] images. We visualize the quantization table QL (the green table) and QC (the orange table)
for kodim04 and kodim09 of different quantization approaches. The model trained with QPM achieves the best RD performance from every
aspect. For more analysis, please refer to Sec. 5 in our paper.

ing improves the restoration PSNR 0.22dB with a lower bi-
trate on Set14 dataset.

Method Optimization bpp↓ / HR PSNR↑
Architecture iteration Kodak Set5 Set14

Ours 0 0.301 / 29.42 0.379 / 30.23 0.359 / 27.74
100 0.307 / 29.55 0.377 / 30.36 0.347 / 27.96

Table 4. Quantitative evaluation for optimization-based rescaling.

5. Ablation Study
In this section, we study the effectiveness of our pro-

posed Quantization Prediction Module, designed training
loss and architectures on “Ours” model.

Quantization prediction module To examine the effec-
tiveness of our QPM, in Fig. 7, we quantitatively evalu-
ate the RD performance on both the restored HR and the
LR JPEG thumbnails of different quantization approaches.
For “fixed tables” and “optimized tables”, we initialize the
quantization tables following the default JPEG. Particularly,
for “optimized tables,” we also optimize the quantization ta-
bles at the training stage. We illustrate the curve for each
model by adjusting the global quality factor q on the quan-
tization tables Q following JPEG as Q′ = Q × q. The
target bitrate goes lower when q increases. In Fig. 6, we
also visualize the quantization tables of different settings.
We notice that compared to the corresponding value in the
fixed or optimized table, the high-frequency quantization
steps in the QPM predicted tables are much smaller and
are image-specific, which may introduce less compression
on the embedding pattern that is important for HR recon-
struction. Consequently, compared to settings with image-
invariant quantization, “Ours” model achieves the best qual-
ity on the reconstructed x̂ and introduces significantly fewer
artifacts on the LR thumbnail ŷ, which also lowers the file-
size of the thumbnails. To further investigate the effective-
ness of QPM, we also leverage QPM to improve the RD per-
formance of standard JPEG (without the downscaling and
upscaling). Please refer to our supplement for more details.

Guidance loss In Fig. 7, we also present the RD curve of

(a) RD curve of restored HR image (b) RD curve of LR thumbnail
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Figure 7. QPM versus image-invariant quantization. We first
train our models with QPM, with a fixed JPEG table or with an op-
timized table, respectively. Then, we evaluate the at different tar-
get bitrate on Kodak [1] dataset. (a) the RD curve on reconstructed
HR image x̂ and input x; (b) the RD curve on LR thumbnail ŷ and
the Bicubic downsampled LR yref .

the “Ours w/o guidance loss” model trained with λ1 = 0.
At around 0.4 bpp, removing guidance loss raises the HR
PSNR by 0.09dB. However, the PSNR of LR thumbnail
drops significantly from 34.1 dB to 13.06 dB. It is unac-
ceptable for user-viewable thumbnails.

Encoder decoder architecture As we study some variants
of “Ours” model, we find that f improves the quality of both
encoded LR thumbnail (0.29 dB) and restored HR image
(0.10 dB). Also, adopting f is more effective than simply
increasing the decoder capacity. Moreover, our study of the
encoder capacity reveals that our framework does benefit
from a larger encoder. More details are in our supplement.

6. Conclusion
In this paper, we propose a new HyperThumbnail frame-

work that can perform real-time 6K image reconstruction
from an LR JPEG thumbnail. We utilize an asymmet-
ric encoder-decoder architecture where the encoder takes
most of the computation while the decoder is relatively
lightweight for real-time performance. A new quantization
prediction module is proposed to optimize the RD perfor-
mance for image rescaling, which is not studied in prior
work. Our framework benefits image sharing and transfer
in real-world latency-sensitive applications, such as cloud
photo storage and retrieval.
Acknowledgement We express our sincere gratitude to our
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Summary

This supplementary material is organized as follows.

• Section A introduces the implementation of our archi-
tecture and training details.

• Section B shows more comparison with previous work.

• Section C discusses more ablation studies of our de-
signs.

A. Implementation Details

We implement our model in PyTorch and train on a sin-
gle Nvidia RTX3090 GPU. In this section, we describe the
details of our architecture and training settings.
Network Architecture. Table 5 and Table 6 respectively
show details of our encoder and decoder. In Table 5, we
describe the architecture of our UNet-based encoder [46].
“PixelUnshuffle 4x” stands for the rearrangement of ele-
ments [47] which downsamples the HR image by a fac-
tor of 4. “3×3, 64, LeakyReLU” denotes a 2d con-
volution operation of kernel size 3, output channel 64,
followed by a LeakyReLU operation. We use the im-
plementation of Residual Dense Block from [53], where
”ResidualDenseBlock-32” refers to a Residual Dense Block
with minimum channel 32. We save the produced quantiza-
tion tables and output coefficients into a single JPEG file us-
ing TorchJPEG [18]. Building blocks are shown in brackets,
with the number of blocks stacked. Downsampling is per-
formed at the beginning of the downsampling block using
max pooling of stride 2. After the first convolution in the
upsampling block, we upsample the decoder feature with
Pixel Shuffling Operation. Then, skip connections with the
encoder features are conducted.

Stage Building Block Output Size

Input Downsample

PixelUnshuffle 4x
3× 3, 64,
LeakyReLU
ResidualDenseBlock-32

H/4×W/4× 64

Downsampling Block1

[
3× 3, 128,
LeakyReLU

]
× 2

ResidualDenseBlock-64
H/8×W/8× 128

Downsampling Block2

[
3× 3, 256,
LeakyReLU

]
× 2

ResidualDenseBlock-128
H/16×W/16× 256

Upsampling Block1

3× 3, 512[
3× 3, 128,
LeakyReLU

]
× 2

ResidualDenseBlock-128

H/16×W/16× 128

Upsampling Block2

3× 3, 256[
3× 3, 64,
LeakyReLU

]
× 2

ResidualDenseBlock-64

H/8×W/8× 64

Output layer 3× 3, 3 H/4×W/4× 3

Table 5. Architectures of our encoder.

In Table 6, we show the details of our efficient decoder,
which is developed based on EDSR [37]. We extract fea-
tures f(Ĉ) ∈ R24×H

s ×
W
s and concatenate f(Ĉ) with the

RGB image ŷ. The concatenated features are fed into the
decoder to reconstruct the HR image x̂:

x̂ = D(ŷ ⊕ f(Ĉ)), (13)

where ⊕ is the concatenation operator along the channel
dimension.

Frequency Feature Extractor f Building Block Output Size

Input Convolution 3× 3, 24 H/32×W/32× 24

Residual Convolution Block

 3× 3, 24,

ReLU,
3× 3, 24,

× 16 H/32×W/32× 24

Output Convolution
[

3× 3, 96,

PixelShuffle 2x

]
× 3 H/4×W/4× 24

Decoder-full Building Block Output Size

Input Convolution 3× 3, 24 H/4×W/4× 24

RRDB Blocks

 ResidualDenseBlock-32,
ResidualDenseBlock-32,
ResidualDenseBlock-32,

× 12 H/4×W/4× 24

Output Convolution
[

3× 3, 96,

PixelShuffle 2x

]
× 2 H ×W × 3

Table 6. Architectures of our efficient decoder.

Training with Pixel Loss. The model is trained with
batch size 16 and patch size 256×256 in each iteration. The
initial learning rate is 2e-4. The learning rate is decayed by
0.75 for every 100, 000 iterations.
Test-time Fine-tuning during Downscaling. During
downscaling stage, we optimize the pre-trained encoder
with a fixed pretrained decoder. In the optimization dur-
ing downscaling, we use full-resolution test images with-
out augmentation as batch size 1 to accelerate optimization.
For each image in the test set, we optimize the encoder and
QPM for 100 iterations with a learning rate of 2.0× 10−4.

B. Additional Comparison Results
B.1. Comparison with Compression+JPEG

The key difference between our rescaling framework
with learned image compression [6, 7, 39] is that our Hy-
perThumbnail provides an instant preview that is compat-
ible with existing JPEG codec. However, learned image
compression typically requires GPU for decompression us-
ing neural networks. For users of learned compression,
one practical solution to support instant preview is sav-
ing a low-resolution JPEG image as a thumbnail besides
compressed bitstream, which we refer to as “Compres-
sion+JPEG” framework.

Our rescaling framework has two advantages over the
above “Compression+JPEG” solution. (a) First, we em-
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Method Bpp of File Format Bitrate↓-Distortion↑ Kodak

Architecture Bitstream JPEG Sum of bpp LR PSNR / HR PSNR

Hyperprior [7]+JPEG 0.214 0.148 0.51 33.41 / 29.22
HIFIC [39]+JPEG 0.172 0.148 0.32 33.41 / 29.35
Ours - 0.299 0.30 33.55 / 29.42

Table 7. Comparison of our HyperThumbnail framework against
learned compression with JPEG thumbnail. In additional baseline,
we provide a JPEG thumbnail besides learned compression, and
take the sum of bitstream size and JPEG size to calculate the final
bpp. Our framework has better rate-distortion performance than
“Compression+JPEG” baseline.

bed the high-frequency information into a compact single
JPEG file that is easy to deliver. In contrast, the “Com-
pression+JPEG” framework requires two different file for-
mats for preview and compressed bitstreams, which is in-
convenient for storage and transmission. (b) Secondly,
as evaluated in Table 7, it takes considerable storage for
standard JPEG [51] thumbnails to have similar fidelity as
our encoded LR thumbnails. We choose Hyperprior [7]
and HIFIC [39], two state-of-the-art compression methods
with a similar running time as ours to build “Compres-
sion+JPEG” baseline. Because of information redundency
in the bitstream and the JPEG file, “Compression+JPEG”
framework takes more storage to achieve comparable LR
PSNR and HR PSNR with our result. In summary, our Hy-
perThumbnail provides a compact and succinct represen-
tation to support both instant preview and high-frequency
reconstruction.

B.2. Quantitative comparison with JPEG

In Figure. 8, we provide an additional comparison of our
rate-HR-distortion performance with baselines. Previous
rescaling methods such as IRN [57] in PNG format with dif-
ferent rescaling scale (“IRN+PNG 8×,4×”) is even worse
than “JPEG” [51]. “IRN+JPEG 4×” shows that JPEG for-
mat with different quality factors boosts the rescaling meth-
ods. In contrast, our method is much better than the above
three baselines, thanks to our image-specific quantization
design.

Another interesting extension of our work is to use QPM
as a plug-in to improve the performance of traditional JPEG
compression, which is shown by “QPM + JPEG” curve. We
set the rescaling factor as s = 1, remove our encoder and
decoder, and only train our QPM Module as a compression
method. An improvement of 0.5dB is observed at most bi-
trate constraints.

Note that traditional image compression codec, such as
JPEG, does not produce an LR embedding as rescaling
methods. Thus, their results are only for reference.
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Figure 8. The rate-HR-distortion curve on Kodak [1] dataset.
Our method (s = 2, 4) outperforms JPEG, IRN [57] in the RD
performance. For the ‘QPM + JPEG’ curve, where s = 1, we
follow the standard JPEG algorithm and adopt QPM module as a
plugin for table prediction.

(a) Ground truth (b) Ours λ1 = 0.6 (c) Ours λ1 = 0

Figure 9. guidance loss ablation on Kodak [1] image kodim17.
We visualize the HR images with their LR counterparts at the
bottom-right. (b) (c) are produced by 4× HyperThumbnail models
trained with different λ1 and the bpp is 0.4.

B.3. Decoding efficiency comparison with AVIF and
JPEGXL.

With no available GPU implementation, we test the de-
coding efficiency of AVIF (344.8 ms) and JPEG-XL (257.9
ms) on an Intel Xeon Gold 5218 server CPU at 4K reso-
lution and 0.3 bpp. In comparison, our decoder (14.1 ms)
is much faster with GPU acceleration. According to a sur-
vey [3], the usage statistics of JPEG (77.8%) is much higher
than AVIF (¡0.1%). Meanwhile, JPEG-XL will soon be
deprecated by Chrome, and some websites (e.g., Twitter
and Shopee) use JPEG as the only lossy image file format.
Meanwhile, our framework can be integrated into most apps
(e.g., Chrome and WhatsApp) without building extra sup-
port for transmission and previewing, which is more practi-
cal and useful.

C. Additional Ablation Study
Guidance Loss. In Figure.9, we conduct a qualitative ab-
lation study of guidance loss. It demonstrates that guidance
loss is crucial to preserve the quality of LR images, without
introducing noticeable degradation to HR images.
Frequency-aware Decoder. Because the efficiency of
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Method Bitrate↓-Distortion↑ Kodak Time(ms)↓ LR PSNR ↑ / HR PSNR↑
Architecture bpp LR PSNR / HR PSNR Down / Up BSD100 Urb100 DIV2K

Ours w/o f 0.30 33.26 / 29.32 86.2 / 32.3 32.56 / 27.57 30.90 / 26.46 33.40 / 30.00
Ours- w/o f -b22 0.30 33.24 / 29.27 86.2 / 38.6 32.51 / 27.63 30.89 / 26.69 33.48 / 30.09
Ours 0.30 33.55 / 29.42 86.2 / 37.8 32.90 / 27.66 31.16 / 26.62 33.62 / 30.15

Ours enc-48 0.30 33.51 / 29.17 63.7 / 37.8 32.88 / 27.58 31.21 / 26.51 33.62 / 30.05
Ours enc-96 0.30 33.52 / 29.29 183.5 / 37.8 32.88 / 27.66 31.22 / 26.66 33.62 / 30.15

Table 8. Ablation study of our encoder-decoder architectures on the downsampling / upsampling time and the PSNR of reconstructed HR
image / LR thumbnail.

HR reconstruction is important for a better user experi-
ence, our decoder architecture has to be succinct and ef-
fective. In Table 8, we study the capacity of our decoder
with frequency feature extractor f . Removing f in our
framework(“Ours-w/of”) results in a drop in both the HR
and LR RD performance. Based on “Ours-w/of”, we in-
crease the residual blocks of the decoder from 16 to 22.
“Ours-w/of -b22” takes more upscaling time, but it ends up
with a similar HR RD performance with “Ours-w/ f” and a
significantly inferior LR RD performance. Since the spatial
resolution of quantized coefficients Ĉ is 1

8 of the embed-
ding image ŷ, the running time of frequency feature extrac-
tor only accounts for 14.6% of the entire decoder. Thus, our
frequency feature extractor f demonstrates a strong advan-
tage with negligible computation cost.
Asymmetric encoder-decoder. We quantitatively evalu-
ate the influence of the encoder capacity on the RD perfor-
mance in the bottom two rows of Tab. 8. Based on “Ours”,
We adjust the channel of our encoder from 64 to 48 and 96.
The experiment shows that our framework benefits from the
larger encoder. Since the 96-channel encoder is 2× slower
than 64 channel encoder and the improvement is marginal,
we set encoder channel to 64 in most of our experiments to
ease training.

Also, larger decoders can be applied to the same Hyper-
Thumbnail for better reconstruction quality. As shown in
the table below, “Ours-large” decoder outperforms “Ours-
full” decoder in the PSNR of HR significantly (Tab. 9) with
4× of parameters, sharing the same hyperthumbnails.

Decoder Kodak Set5 Set14 BSD100 Urb100 DIV2K

Ours-full 29.67 30.48 28.21 27.93 27.35 30.49
Ours-large 29.74 30.56 28.39 28.01 27.74 30.61

Table 9. HR reconstruction PSNR with different decoder capacity.

C.1. Additional qualitative results

In this section, we visualize more results on the
DIV2K [4] validation dataset and the FiveK [11] dataset.
Our model achieves the best balance between the embed-
ding artifacts on LR and the restoration of HR detail. Our
approach outperforms baseline methods, especially in tex-

ture restoration. All baseline models are trained on the same
DIV2K training dataset to fit on guidance LR ŷ and target
HR x̂. The results are cropped from the original image to
ease comparison, please refer to Fig. 10. Also, in Fig. 11,
we visualize more rescaling results of real world 6K images
with our framework.
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EDSR [37] 4× SwinIR [35] 4× IRN [57] 4× HCFlow [36] 4× Ours 4× Ours-full 4× Ground Truth
& JPEG q=98 & JPEG q=98 & JPEG q=96 & JPEG q=90

Figure 10. Visual results of performing 4× rescaling on the DIV2K [4] and FiveK [11] datasets with baseline methods and our models.
The images are cropped to ease the comparison. Please zoom in for details.
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1472×960, 346KB 5888×3840, 16.9MB

Ours - JPEG thumbnail Ours – restored HR (cropped)

1408×896, 159KB 5632×3584, 11.9MB 1408×896, 413KB 5632×3584, 17.5MB

1472×960, 251KB 5888×3840, 16.9MB

960×1472, 658KB 3840×5888, 30.3MB

Ours - JPEG thumbnail Ours – restored HR (cropped)

960×1472, 497KB 3840×5888, 24.4MB

5632×3584, 14.4MB1408×896, 257KB

1472×960, 426KB 5888×3840, 24MB

Ours - JPEG thumbnail Ours – restored HR (cropped)

Figure 11. More results of 4× rescaling with our framework on real-world 6K images [11]. Please zoom in for details. Note that the
images here are compressed due to the size limit of camera-ready.
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