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Figure 1: Out-of-domain GAN inversion and attribute manipulation. Our method maintains out-of-domain objects in the
input image (e.g., background, earrings) and generates high-fidelity attribute-edited results. Please zoom in for detail.

Abstract

The fidelity of Generative Adversarial Networks (GAN)
inversion is impeded by Out-Of-Domain (OOD) areas (e.g.,
background, accessories) in the image. Detecting the OOD
areas beyond the generation ability of the pre-trained model
and blending these regions with the input image can en-
hance fidelity. The “invertibility mask” figures out these
OOD areas, and existing methods predict the mask with the
reconstruction error. However, the estimated mask is usu-
ally inaccurate due to the influence of the reconstruction er-
ror in the In-Domain (ID) area. In this paper, we propose a
novel framework that enhances the fidelity of human face in-
version by designing a new module to decompose the input
images to ID and OOD partitions with invertibility masks.
Unlike previous works, our invertibility detector is simul-
taneously learned with a spatial alignment module. We it-

eratively align the generated features to the input geome-
try and reduce the reconstruction error in the ID regions.
Thus, the OOD areas are more distinguishable and can be
precisely predicted. Then, we improve the fidelity of our re-
sults by blending the OOD areas from the input image with
the ID GAN inversion results. Our method produces photo-
realistic results for real-world human face image inversion
and manipulation. Extensive experiments demonstrate our
method’s superiority over existing methods in the quality of
GAN inversion and attribute manipulation.

1. Introduction

In recent years, there have been efforts to apply gener-
ative models, e.g., StyleGAN2 [20], for face image edit-
ing [1, 2, 40, 32, 5, 36, 24, 35, 4, 27, 42, 28, 23, 39] and



restoration [37, 14, 44, 41]. The basis of these applica-
tions is the GAN inversion. The typical inversion strat-
egy [27, 35] is to train encoders to encode the face images
into the latent of the pre-trained generator and reconstruct
the images via the generator. However, such approaches
can not result in artifact-free and precise reconstruction due
to the inevitable information loss when translating the high-
resolution image into the limited GAN latent space.

Some improved methods were proposed to further fine-
tune the generator for image-specific reconstruction with-
out losing editability [28, 23]. Although these finetuning-
based techniques improve the inversion accuracy of iden-
tity and style, still, the generator can hardly handle the
reconstruction of out-of-domain contents, e.g., the com-
plex background, accessories, and hair. Meanwhile, some
works [36, 37, 24] strengthen the potential of out-of-domain
inversion capability of pre-trained GAN models by mod-
ulating the generator features with the input features ex-
tracted from source images. Such methods suffer from the
fidelity-editability trade-off [36, 29, 34, 14, 37, 41] since the
feature modulation operation breaks the GAN priors. The
larger latent space increases the reconstruction quality but
undermines the editability of the framework.

Furthermore, some recent works [32, 24] propose to dis-
entangle the target image into different spatial areas. They
refine the regions with low invertibility to improve the inver-
sion fidelity. Such low invertibility regions are the parts that
cannot be reconstructed well with the generator, so-called
Out-Of-Domain (OOD) areas. E.g., Song et al. [32] esti-
mate a manipulation-aware mask with an attribute classi-
fier. However, they ignore the geometrical misalignment
between the inverted and the original images and apply a
deghosting module for result refinement, which leads to
undesired artifacts in their results (Fig. 1 (e)). Parmar et
al. [24] train an invertibility mask prediction module with
perceptual supervision. The invertibility masks are then
used as guidance for GAN feature modulation. However,
their prediction of invertibility is noisy and inconsistent
with the face semantic parts. Therefore, they adopt a seg-
mentation model for refinement, but the invertibility in the
same semantic area (e.g., occlusions on the face) could be
inconsistent. Also, they manually design thresholds to fil-
ter out the OOD areas, which is hard to optimize for small
objects (Fig. 1 (d)).

In summary, existing invertibility estimation methods
mainly adopt the reconstruction error as the reference to
judge the OOD regions. However, they ignore that recon-
struction errors also come from the In-Domain (ID) areas.
Consequently, their predicted mask is noisy and unreliable.

In this paper, we propose a novel strategy for photo-
realistic GAN inversion by decomposing the input images
into OOD and ID areas with invertibility masks. We fo-
cus on the high-resolution (10242 pixels) GAN inversion on

human face images and the downstream applications (e.g.,
attribute editing). Our basic idea is to reduce the recon-
struction error of the ID areas and thus highlight the error
of OOD regions. The reconstruction error of the ID area
comes from both the textural and geometrical misalignment
between the input image and the generated image. Although
previous works improve the textural accuracy in the recon-
struction by predicting or optimizing a better latent vector
w, the geometrical misalignment is rarely discussed, which
we believe is also important for invertibility estimation.
Hence, we design an invertibility detector learned with an
optical flow prediction module to reduce the influence of ge-
ometrical misalignment. The optical flow is computed be-
tween the features of the encoder and the generator, which
is then applied to warp the generated features to alleviate
their misalignment with the input features. Compared with
feature modulation [36, 24, 42], such warping will not break
the fidelity of the generated textures. Along the training, the
reconstruction error of the ID area will be minimized, and
the invertibility mask prediction will be gradually focused
on the OOD regions. The overall procedure needs no extra
labels for the mask or flows.

Based on the invertibility prediction, we design an ef-
fective approach to composite the generated content with
the out-of-domain input feature for a photo-realistic gener-
ation with high fidelity. Our framework consists of three
major parts: the encoder, the Spatial Alignment and Mask-
ing Module (SAMM), and the generator. First, we extract
features from the input image and predict its latent vector
with a pre-trained image-to-latent encoder [35, 4]. Second,
we feed the latent vector into a pre-trained StyleGAN2 [20]
model for content generation, acquiring generated features.
Third, we estimate the optical flow and the invertibility
mask between the input and the generated features at multi-
ple resolutions. Then, we warp the generated features with
the flow, aiming to minimize the reconstruction error of ID
regions. Finally, we composite the input image with the
generated content according to the invertibility mask.

Since only the spatial operation, i.e., warping, is applied
to the generated features, we maintain their editability with
existing GAN editing methods. Combined with the artifact-
free and precise inversion effects, our method has excellent
superiority in reconstruction accuracy and editing fidelity
over existing approaches. In this paper, we adopt Style-
GAN2 as the backbone for experiments, and extensive ex-
perimental results demonstrate that our method outperforms
current state-of-the-art methods with higher reconstruction
fidelity and better visual quality.

In summary, our contributions are listed as follows:

1. We propose a novel framework for out-of-domain
GAN inversion on human face images by aligning and
blending the generated image with the input image via
optical flow and invertibility mask prediction.



2. We investigate the GAN invertibility with a novel Spa-
tial Alignment and Masking Module, which is a new
solution for invertibility decomposition.

3. Our proposed framework can produce photo-realistic
results in both reconstruction and editing tasks. Exper-
iments show that our framework outperforms existing
methods in reconstruction accuracy and visual fidelity.

2. Related works
GAN inversion. The process of GAN inversion involves
encoding a real-world image into a semantic-disentangled
latent space before reconstructing the image with a GAN
generator. It enables various downstream applications, e.g.,
face editing with labels [32, 5, 36] or texts [25, 12, 3].

To tackle the non-trivial translation between the image
and latent vector, some efforts have been made to design
more suitable latent space and better encoders. Abdal et
al. [1, 2] analyzes the extended GAN latent space (W+)
for better inversion and attribute manipulation of real im-
ages. Based on the W+ latent space, later works fur-
ther improve the inversion accuracy with hierarchical en-
coding [27, 16], progressive training [35] and iterative pre-
diction strategies [4, 39]. More recently, Bai et al. [7] in-
vestigated the padding space of the StyleGAN generator
to increase the invertibility of the pre-trained GAN model.
Roich et al. [28] and Nitzan et al. [23] propose strategies
to first encode images into latent vectors, then finetune the
pre-trained generator for specific images or people. More
recently, Alaluf et al. [5] adopt a hypernetwork [13] to mod-
ulate the generator kernel for better GAN inversion. How-
ever, such methods can hardly invert the out-of-domain con-
tents such as image-specific backgrounds or accessories.
The distortion-editability trade-off. To improve the fi-
delity of GAN inversion, some works [36, 37, 42, 14, 44,
33] add extra connections between the encoder and gen-
erator to further extend the latent space, but such meth-
ods fall into a tricky dilemma of balancing the distortion-
editability tradeoff [36, 29]. A larger latent space helps
increase the reconstruction precision but decreases the ed-
itability in the generation due to the increasing semantic en-
tanglement problem. Recently, Parmar et al. [24] proposed
the SAM with an invertibility prediction module guided by
LPIPS [43] loss to predict the spatial invertibility map for
the input image. Nevertheless, their invertibility predic-
tions are noisy and inconsistent with the input image, which
needs to be smoothed with a pre-trained segmentation net-
work. Furthermore, since SAM is an optimization-based
method, it takes a long inference time to produce a high-
fidelity result. Moreover, Song et al. [32] propose Diff-
CAM to refocus the GAN inversion on the attributes to be
manipulated. Instead of inversing the whole image, Diff-
CAM aims to find the edited area and blend the input image

with the edited one. They adopt a semantic classifier (i.e.,
the facial attributes) as the prior for a rough editing mask
prediction. However, due to the misalignment between the
generated content and the input image, they suffer from un-
desired ghosting artifacts in their composition results. Thus,
DiffCAM also needs to employ an extra ghosting removal
module, while it can not fix the artifacts thoroughly.

Different from existing GAN inversion methods, we si-
multaneously improve the ID reconstruction via geometric
alignment and OOD reconstruction via image blending with
the invertibility mask. In our experiments, we compare the
baseline methods’ inversion and attribute manipulation per-
formance with our framework. Our method outperforms ex-
isting works in reconstruction quality (Fig. 4) and can pro-
duce photo-realistic face editing results (Fig. 8) with off-
the-shelf GAN manipulation approaches [30, 25, 17].

3. Method
In this paper, we propose a new framework for out-

of-domain GAN inversion on human faces. The pro-
posed framework can produce a precise invertibility mask
to achieve excellent input and generated image composi-
tion. The overview of our framework is shown in Fig. 2 and
Fig. 3. In the subsequent sections, we discuss the frame-
work’s overview in Sec. 3.1, our proposed Spatial Align-
ment and Masking Module (SAMM) in Sec. 3.2, the in-
version and editing pipeline using our proposed modules in
Sec. 3.3, and our training strategy in Sec. 3.4.

3.1. Overview

Traditional GAN inversion. The essential part of our
framework is the estimation of the GAN invertibility on a
pre-trained StyleGAN2 [20]. The StyleGAN2 generator is
a multi-scale Convolutional-Neural-Network (CNN), where
the results are generated gradually with enlarged spatial res-
olutions. Meanwhile, the image generation is controlled
by the latent vector w in the generation process. Recent
works [27, 35, 4, 36, 24, 32] adopt the pre-trained Style-
GAN2 generator and aim to inverse the input RGB image
into the well-disentangled W+ ∈ R512×18 latent space pro-
posed in [27] with an encoder E. Given an input image
x ∈ R3×1024×1024, the GAN inversion of x is to first en-
code x into a latent vector w ∈ W+ with the encoder E,
then reconstruct the image x̂ with the generator G, that:

x̂ = G(E(x)). (1)

GAN inversion with OOD decomposition. Previous
work [11] analyzed the GAN training strategy and discov-
ered that W space is a low-rank approximation for the target
domain of generator G. Thus, it is difficult to reconstruct x̂
without distortion. To solve this drawback, we tackle GAN
inversion from the perspective of invertibility decomposi-
tion. Different from [36, 42], we intend to first decompose
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Figure 2: An overview of our framework. Our frame-
work begins by extracting features from the input image and
aligning the generated features to the input features, which
improves the in-domain reconstruction accuracy and eases
the invertibility decomposition. Additionally, we predict
the invertibility mask for feature and RGB space blending,
which enhances the out-of-domain reconstruction quality.

x into the invertible partition xin and the OOD partition
xout (e.g., accessories, tattoos) with an invertibility mask
m, where

xout = x ·m, xin = x · (1−m). (2)

Then, we can reconstruct or edit xin via GAN inversion and
preserve the OOD contents xout for better fidelity, that

x̂in = G(E(x)), (3)
x̂ = xout + x̂in · (1−m). (4)

The proposed framework consists of three major parts, i.e,
the encoder E, the generator G, and SAMM. With the pre-
trained and fixed E and G, the SAMM estimates GAN in-
vertibility by minimizing the reconstruction error of x̂. At
the training stage, we adopt the pre-trained image-to-latent
encoder E from [35] and train the SAMM for image-to-
image reconstruction. Please refer to the following sections
for details.

3.2. Spatial Alignment and Masking Module

The limitation of previous invertibility estimation. Previ-
ous methods for invertibility mask prediction mainly adopt
the reconstruction error as the supervision [24]. However,
the predictions are usually inaccurate since the subtle ID re-
construction error, which should not be considered as the
OOD content, disturbs the prediction of invertibility.

We find these ID errors come from the textural and geo-
metrical misalignment between x and x̂in. While the textu-
ral misalignment (e.g., eyes or skin color) can be corrected
via latent space optimization [24, 5, 4, 23, 28], it is hard to
reconstruct delicate local structures (e.g., the boundary of
the face or hair) in x with w, especially when the output
resolution is high (e.g., 10242 and above). In this paper, we
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Figure 3: The invertibility decomposition. With the pre-
dicted invertibility mask m, we blend the in-domain GAN
inversion x̂in with the out-of-domain partition xout to pro-
duce the final result x̂.

mainly focus on minimizing the geometrical misalignment
with spatial operations such as warping.
Our SAMM for invertibility estimation. Inspired by pre-
vious works done by Collins et al. [9] and Chong et al. [8]
where they discovered that simple spatial operations in the
GAN feature space maintain the realistic textures in the re-
sults. We also find that because w controls the generation
by modulating the variance of the generated feature maps
channel-wisely, simple spatial warping in the feature space
of G will not compromise the editability of the framework.
Thus, we train SAMM with an optical flow prediction mod-
ule to predict the flow between x and x̂in in the ID regions.
Then, we warp the generated features with grid sampling
(GS) to reduce the geometrical error in x̂in.
The details of SAMM. First, we encode the input image
into the latent vectors w and the input features fi (i ∈
{1, ..., L}). Then, feature map gi is produced in the i-th
layer of generation. During the generation, we feed both
gi and fi into the SAMM for flow and mask prediction.
Meanwhile, we do the prediction in an iterative manner (N
iterations). The pseudo-code of SAMM is shown in Algo-
rithm 1.

Algorithm 1 The cycle optical flow and invertibility mask
prediction with SAMM in the i-th layer of generation.

1: Initialization: j = 1, gi,0 = gi and ∆x
i ,∆

y
i = 0

2: for j = {1, ..., N} do
3: δxi , δ

y
i ,mi = SAMMi(fi ⊕ gi,(j−1))

4: ∆x
i ← ∆x

i + δxi , ∆y
i ← ∆y

i + δyi
5: if j = 1 then Mi ← mi

6: else Mi ← mi ·Mi +Mi · (1−Mi)
7: endif
8: gi,j = GS(gi,∆x

i ,∆
y
i ) ·Mi + gi · (1−Mi)

9: end for

3.3. Blending

Generate x̂in. Because gi,N is resampled from gi, it main-
tains the local semantic attributes of gi and is spatially



aligned to fi. The aligned feature gi,N is then fed into the
next styled-convolution layer Gi and gi+1 = Gi(gi,N , w).
And finally, x̂in = toRGB(gL), where gL is the last layer’s
feature map and toRGB is the output convolution in G.
We visualize the generation process of x̂in in Fig. 2. In
this paper, we align gi and fi in multiple resolutions of
322, 642, 1282, and 2562. Also, we set N = 2 in most
of our experiments. For more details on our architecture,
please refer to our supplement.
Generate m. In order to blend the inversed result x̂in and
xout in the RGB domain (Eqn. (4)) for a photo-realistic
result, it is crucial to find a blending mask m which pre-
cisely distinguish the OOD contents only. As is shown in
Fig. 5, we observe that when we set ϕarea to a small value
in the training stage, the high-intensity values in Mi,N pri-
marily gather around the OOD area (e.g., earrings, glasses).
The mask of different resolutions focuses on slightly dif-
ferent areas because the target texture of each layer in the
source generator is different. Usually, the lower layers of
the source generator focus on larger structures, such as the
rough shape of the face, and the higher layers focus on de-
tailed structures, such as the skin texture and accessories,
which is also observed in [27, 35, 5].

Therefore, we could gather Mi,N in each layer of gener-
ation for a final blending mask m during inference. Instead
of directly upscale and merging all Mi,N to m, we con-
sider that consistent high-intensity area as the OOD area.
We adopt a merging function to sequentially merge Mi,N ,
i ∈ {1, ..., L}, as shown in Algorithm 2.

Algorithm 2 Gathering the masks.

1: Initialization: M1,N =⇑ (M1,N )
2: for i ∈ {2, ..., L} do
3: M̃i,N ← M̃(i−1),N · (⇑ (Mi,N )− M̃(i−1),N + 1)
4: end for
5: Update: m← M̃L,N

Where ⇑ means up-sampling to the output resolution of
the generator, i.e., 10242 for the pre-trained StyleGAN2
generator on face images.
Generate x̂. Our final output of GAN inversion result x̂
is produced following Eqn. (3). The blending process is
visualized in Fig. 3, where we blend x̂in and xout with m.

3.4. Training Objectives

In Sec. 3.2, we propose the SAMM to align the generated
feature g to f , where the invertibility is defined by m. In this
section, we demonstrate the loss functions to train SAMM.
First, we assume that the subtle misalignment in x̂in can be
fixed with simple spatial operations in Algorithm. 1. Hence,
we train our framework by minimizing the reconstruction
loss Lrec on x̂. Here we adopt the VGG perceptual loss [18]

Lper, the MSE loss and the ArcFace [10] identity loss Lid

as our reconstruction objectives, that

Lrec = Lper(x, x̂) +MSE(x, x̂) + Lid(x, x̂), (5)

please refer to our supplement for detail definition of Lper

and Lid. Also, to make x̂in look realistic, we keep the
vanilla adversarial loss Ladv for GAN model [20] training.
Here we skip the definition of Ladv for simplicity. Refer to
our supplement for more details.

3.4.1 Mask Regularization

We hope to maximize the area of xin to better utilize the
GAN invertibility for the follow-up applications (e.g., face
attribute manipulation). Thus, we train SAMM to produce
m with the maximum low-intensity area under the super-
vision of Lrec, since the region with low-intensity value in
Mi,N indicates only minor correction in gi is needed, which
also implicitly defines ID areas in x. Inspired by [6], we use
a regularization loss Lmask on m. Lmask consists of the bi-
nary regularization Lbin and the area regularization Larea:

Lbin(Mi,N ) = min(Mi,N , (1−Mi,N )), (6)
Larea(Mi,N , ϕarea,i) = min(0, ϕarea − 1

|Mi,N |
∑

Mi,N ), (7)

where ϕarea,i is the expect OOD size in the i-th layer, and
|Mi,N | is the pixel count of mask Mi,N . Finally, we have

Lmask =

L∑
i=1

[λ1Lbin(Mi,N ) + Larea(Mi,N , ϕarea,i)], (8)

where λ1 is the loss weight for Lbin. In summary, our over-
all objective Ltotal is:

Ltotal = Lrec + Ladv + Lmask. (9)

We found that if we loosen the Lmask with a larger ϕarea

and a smaller λ1, the predicted m has a high value (close to
1) at most pixels except for the eyes and mouth area. Con-
sequently, the reconstruction error of x̂ can be optimized to
be low, while the editability must be harmed. As we hope
to maintain the off-the-shelf editability of styleGAN gener-
ator, in this paper, we set ϕarea = 0.3 for 322, 642 masks
and ϕarea = 0.25 for 1282, 2562 masks.

4. Experiments
In this paper, we adopt the official checkpoints of

e4e [35] or ReStyle [4] encoder E and StyleGAN2 [20]
(config-f) generator G, which were pretrained on the
FFHQ [19] dataset, and fixed their parameters. Then, we
train our SAMM with E and G on FFHQ for GAN inversion
to minimize Ltotal (Eqn. 9). Please refer to our supplement
for more training details.
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Figure 4: Comparison of GAN inversion quality on CelebAMask-HQ [22] testing dataset. Our method produces the best
results in the hats and backgrounds since we skip the generation of the out-of-domain contents. Meanwhile, we eliminate
the spatial misalignment in the generator features to better compose out-of-domain content with generated content without
ghosting artifacts.

Input Inversion Narrow eyes

Predicted masks

Figure 5: The first row shows our GAN inversion and edit-
ing result with our method. The second row shows the pre-
dicted masks Mi,N in the resolution of 322, 642, 1282, 2562

and m in the resolution of 10242, respectively.

Face inversion. Following previous works [36, 32, 24,
42], we evaluate our model and state-of-the-art baseline
methods on the first 1,000 images in the testing partition
of CelebAHQ-Mask [22] dataset, assessing the inversion
quality. We measure the image reconstruction accuracy
with PSNR and SSIM [38], the perceptual distance with
LPIPS [43], and also the distribution distance between the
reconstructed image and the source image that is repre-
sented with Fréchet inception distance [15] (FID).

For HyperStyle [5], we set the optimization iteration to 5.
For SAM [24], it takes over 131 seconds to finish 1001 iter-
ations of optimization to produce a result, which is too time-
consuming for testing. To make a fair comparison, we set
the optimization iteration of SAM to 10 in our experiment.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ Runtime(s)↓
e4e [35] 20.30 0.665 0.350 34.98 0.145
ReStyle [4] 21.46 0.682 0.345 32.20 0.448
HFGIe4e [36] 23.66 0.724 0.285 22.79 0.159
HyperStyle [5], iter=5 23.59 0.728 0.300 30.49 0.915
SAM [24], iter=10 21.95 0.684 0.311 27.38 1.199
FeatureStyle [42] 25.24 0.717 0.188 16.86 0.181
Ourse4e, N=1 26.97 0.892 0.147 13.33 0.166
Ourse4e, N=2 27.08 0.897 0.143 13.13 0.193
Ourse4e, N=3 27.24 0.900 0.139 12.73 0.218
OursReStyle, N=2 25.37 0.813 0.236 17.68 0.602

Table 1: Quantitative evaluation of GAN inversion quality
on the first 1,000 images in the CelebAHQ-Mask [22] test-
ing dataset. The runtime is measured on a single nvidia
RTX3090 GPU.

Method Inversion ↓ Editing ↓ Method Inversion ↓ Editing ↓
HyperStyle [5], iter=5 3.67 3.51 SAM [24], iter=10 3.79 3.56
HFGIe4e [36] 3.19 4.13 DiffCAM [32] - 3.75
FeatureStyle [42] 2.68 4.01 Ourse4e 1.64 2.04

Table 2: Average ranking of user’s preference on the GAN
inversion and attribute editing results of human face images.

Also, because DiffCAM [32] only works for attribute edit-
ing, we do not evaluate this model for face inversion. As is
shown in Tab. 1, our model outperforms previous methods,
achieving the best restoration quality measure with differ-
ent metrics. In Fig. 4, we present multiple inversion results
for comparison. Our method preserves meticulous details
in the background, hats, and even the cigarette on the face
by conducting the blending for the out-of-domain objects
during the generation. We conduct a user study and ask the
users to rank the face inversion and editing results based on
the image faithfulness, the detail preservation of OOD con-
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Figure 6: Face manipulation results of our framework on CelebAMask-HQ [22] dataset, please zoom in for detail.

Input Inversion →“Pink hair”

Figure 7: Edit with text guidance. Our method also
support off-the-shelf attribute manipulation with text guid-
ance [25] for in-domain area (i.e., hair color).

tents, the overall visual satisfaction, and the editing quality.
The average rankings are summarized in Tab. 2. Most par-
ticipants rated both the results of face inversion and attribute
manipulation of our framework as the best. Please refer to
our supplement for more details of the user study and more
visual results for comparison.
Attribute manipulation. Also, we have compared our
method with state-of-the-art methods [36, 4, 5, 24] on face
attribute manipulation [17, 25]. In Fig. 6, we apply off-the-
shelf GAN editing approach [31, 31] with our framework
on CelebAHQ-Mask [22] images, our method preserves the
out-of-domain contents regardless of the editing direction.
Moreover, as shown in Fig. 7, we also perform text-guided
semantic editing on the hair color with the CLIP [26, 25]
model. In Fig. 11 and Fig. 8, we compare our attribute edit-
ing performance with baseline approaches. Our framework
produces high-fidelity editing results without undesired ar-
tifacts and provides the best editing quality against existing
works. Compared with [5, 24, 36, 42], our work preserves
more details in the microphone, hat, and background.

1Image license: www.pexels.com/license

In addition, we notice an unnatural over-sharpened arti-
fact in the result of DiffCAM [32] (Fig. 1(e)). We hypoth-
esize their ghosting removal module introduces such an ar-
tifact. Instead, our SAMM module helps decrease the ID
reconstruction error along with the generation of x̂in. Thus
we do not need a post-processing process after the blending.
Furthermore, ours works better than [32, 24] in cases with
occlusions on faces. For more visual results, please refer to
our supplement.

4.1. Ablation Study

In this section, we conduct ablation studies on our spatial
alignment and masking module.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ Avg. OOD area(%)↓
Ourse4e, w/o SA 26.32 0.875 0.171 13.53 31.34
Ourse4e, N=2, skip SA 26.68 0.888 0.156 14.26 23.97

Table 3: Ablation of spatial and iterative alignment. The
average OOD area is calculated by averaging the intensity
of the predicted invertibility masks on the testing dataset.

Spatial alignment (SA). We study SA by training the
model without SA (“Ourse4e, w/o SA”) and by skipping the
grid sampling operation in Algorithm 1 on our full model
(“Ourse4e, N=2, skip SA”). As shown in Tab. 3, we found
that the reconstruction quality drops compared to our full
model for both settings. Additionally, the predicted average
OOD area (AOA) is 7.37% larger for “Ourse4e, w/o SA”,
while a lower AOA is vital to our framework since we hope
to maximize the ID area in the decomposition to better fa-
cilitate downstream applications such as attribute editing.
In Fig. 9 we provide some visual results of skipping the SA,
where we detect undesired ghosting artifacts in the blending
result. Please refer to our supplement for more analysis.
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→ + Smile

→ + Thick Eyebrows

Figure 8: Comparison of attribute manipulation quality via GAN inversion. We apply the same edit on the latent vectors and
generate the editing results with baseline methods and our method. Our method produces the best result with well-preserved
out-of-domain content and high-fidelity generated content. Please zoom in for detail.

Input (a) Ours w/o spatial alignment (b) Ours

Figure 9: Ablation study on spatial alignment. We gen-
erate (a) by skipping the grid sampling operation on gi in
SAMM. Compared to the result of our full model (b), the
ghosting artifact is evident in (a). Please zoom in for detail.

Iterative alignment. In Sec. 3.2, we introduce the itera-
tive alignment strategy for flow and mask prediction. In
Tab. 1, we quantitatively evaluate the inversion quality of
our model with N={1, 2, 3}, and the reconstruction perfor-
mance increase with the counts of iterative alignment. Be-
sides, we measure the AOA for different N . With N=2,
23.97% of pixels in our testing dataset is recognized as
the OOD partition and the number increases by 2.4% and
0.65% when N=1 and N=3. It suggests that the itera-
tive alignment strategy also improves the editability of our
framework. Also, we conduct experiments to investigate the
usefulness of our loss function on the masks. Please refer to
our supplement for more details.

Input e4e [35] Inversion Ourse4e Inversion →+Grass

Figure 10: Our GAN inversion and manipulation on Stand-
ford Cars [21] dataset.

4.2. Extension to non-face domains

Conceptually, our framework could be extended to other
image domains such as cars for better OOD GAN inversion
quality. As shown in Fig. 10, our framework also improves
the car inversion result, compared to e4e [35]. We will leave
more investigation of non-face domains to our future work.

5. Conclusion
In this paper, we propose a novel framework for photo-

realistic OOD GAN inversion via invertibility decompo-
sition on human face images. We design the SAMM to
predict the invertibility mask and the optical flows along
with the generation process, which can work as a general
plugin with different pre-trained encoders (i.e., e4e [35],
ReStyle [4]). We only invert the ID area in the input image
using the encoder and generator, then align the generated
features with the input features for better reconstruction ac-
curacy without compromising the editability. Then, we can
manipulate the attributes in the ID area with off-the-shelf
approaches. Lastly, we seamlessly merge the OOD contents
with the generated image. Our framework produces photo-



realistic results and outperforms previous works in terms
of both inversion accuracy and editing fidelity, as demon-
strated in our experiments.
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