Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals

Abstract

There are currently no effective biomarkers for diagnosing Parkinson’s disease (PD) or tracking its progression. Here, we developed an artificial intelligence (AI) model to detect PD and track its progression from nocturnal breathing signals. The model was evaluated on a large dataset comprising 7,671 individuals, using data from several hospitals in the United States, as well as multiple public datasets. The AI model can detect PD with an area-under-the-curve of 0.90 and 0.85 on held-out and external test sets, respectively. The AI model can also estimate PD severity and progression in accordance with the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (R= 0.94). The AI model uses an attention layer that allows for interpreting its predictions with respect to sleep and electroencephalogram. Moreover, the model can assess PD in the home setting in a touchless manner, by extracting breathing from radio waves that bounce off a person’s body during sleep. Our study demonstrates the feasibility of objective, noninvasive, at-home assessment of PD, and also provides initial evidence that this AI model may be useful for risk assessment before clinical diagnosis.

Publication
Neture Medicine
Ying-Cong Chen
Ying-Cong Chen
Assistant Professor

Ying-Cong Chen is an Assistant Professor at AI Thrust, Information Hub of Hong Kong University of Science and Technology (Guangzhou Campus). He obtained his Ph.D. degree from the Chinese University of Hong Kong. His research lies in the broad area of computer vision and machine learning, aiming for empowering machine with the capacity to understand human appearance, physiology and psychology. His works contribute to a wide range of applications, including contactless health monitoring, semantic photo synthesis, and intelligent video surveillance.